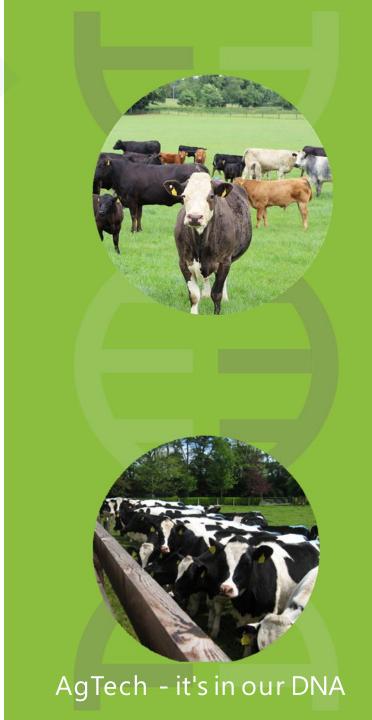
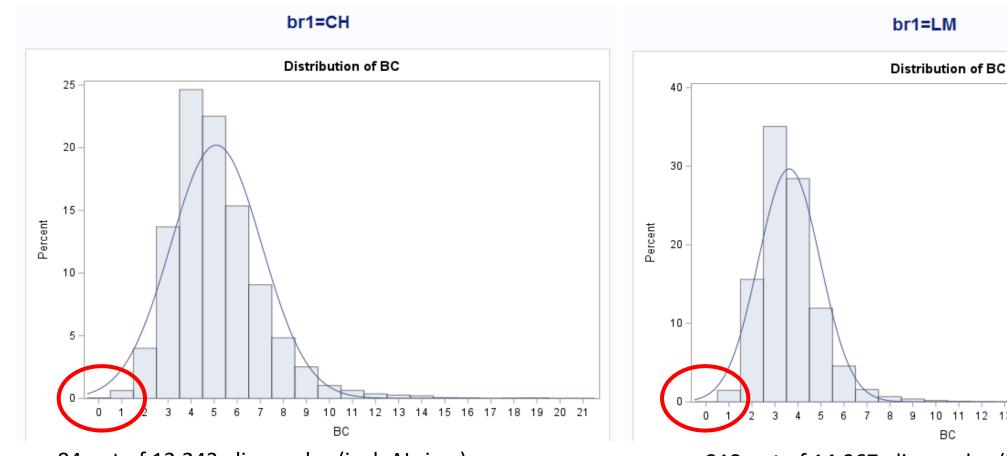
COF

Beef Stakeholders 14th February 2025


Agenda

- Opening
- Update on work due for implementation this summer
 - Calving updates
 - SCEP weight inclusion
 - Economic Value Updates
- Weanling Index
- Data Edits in Evaluations
- Slide on Stars what group to use
- Feed Intake
- TB Resistance breeding presentation
- Carcass weights (2024 Stats)
- International Information

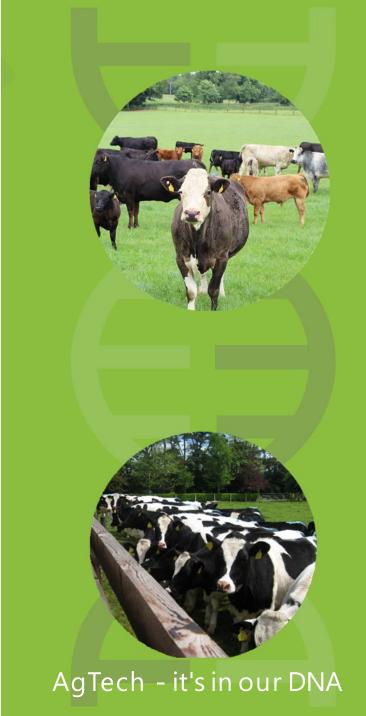

COF

Calving evaluation updates

Issue

Existence of some extremely easy calving animals (<2%) CH & LM sires

84 out of 12,243 alive males (incl. Al sires)


ВC 212 out of 14,067 alive males (incl. Al sires)

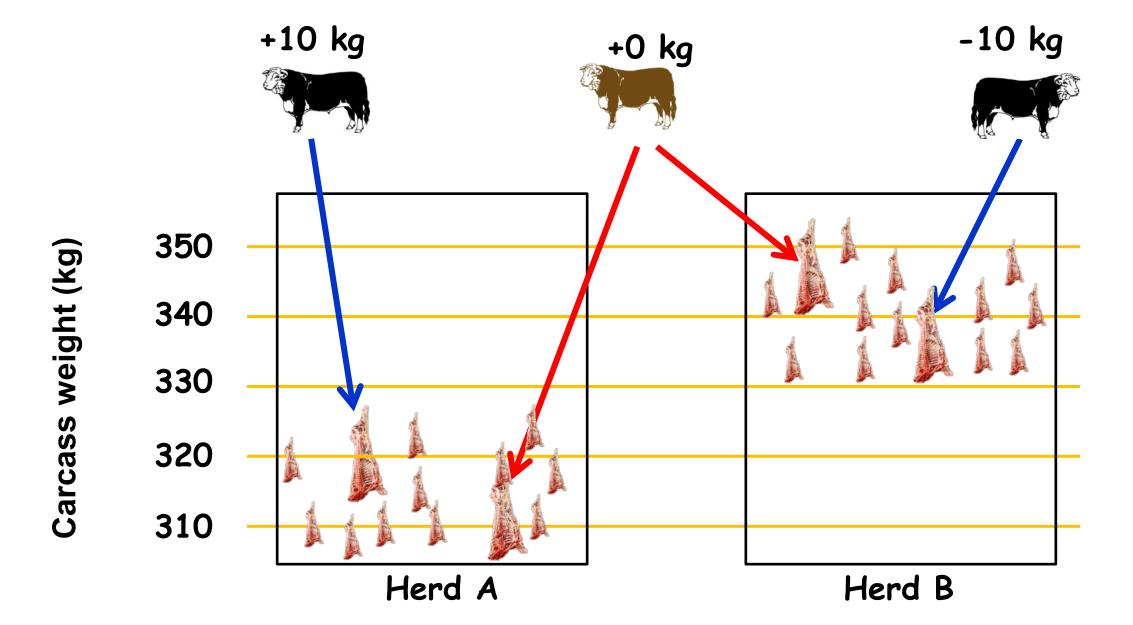
Source of problem

- Interbeef calving evaluation data being integrated
- Foreign sires with calving proofs much easier than well proven sires in Ireland
- Issue highlighted with Interbull centre
- Completion of Interbeef test run with updated parameters
 - > France addition of chest girth as predictor trait
 - Updated genetic parameters from Scandinavian countries
- Test run results distributed to participating countries
- National test run results indicate reduction in the extremes

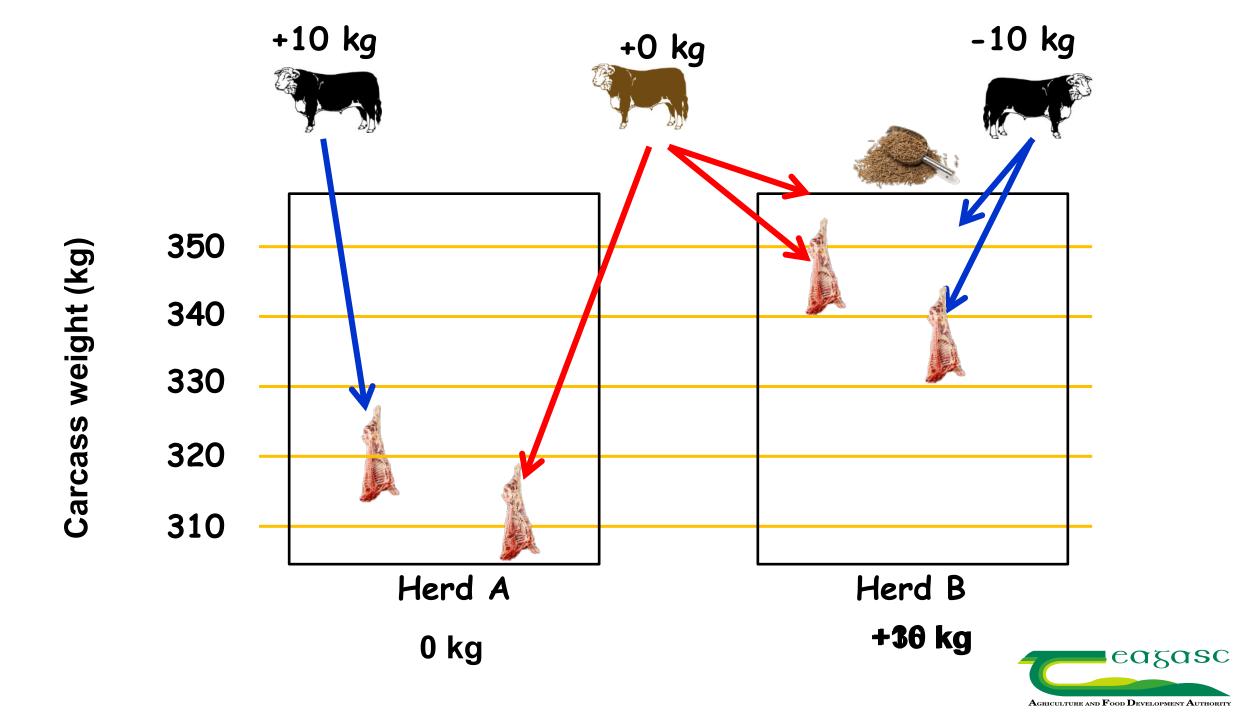
COF

SCEP weight inclusion

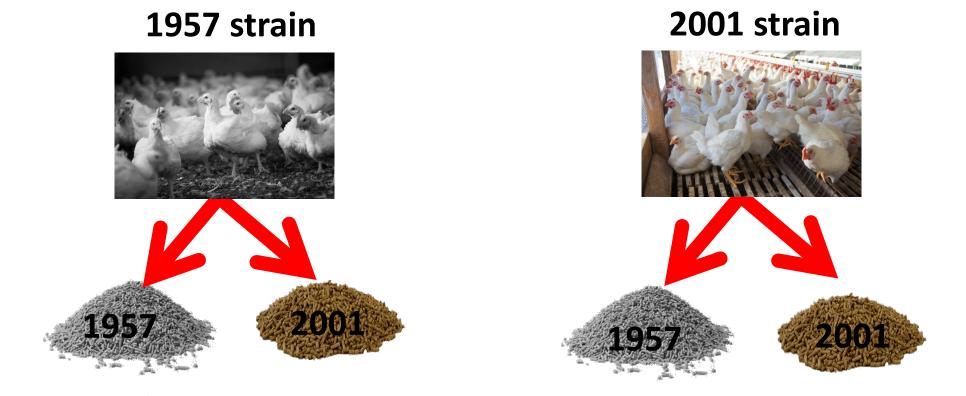
Feed intake



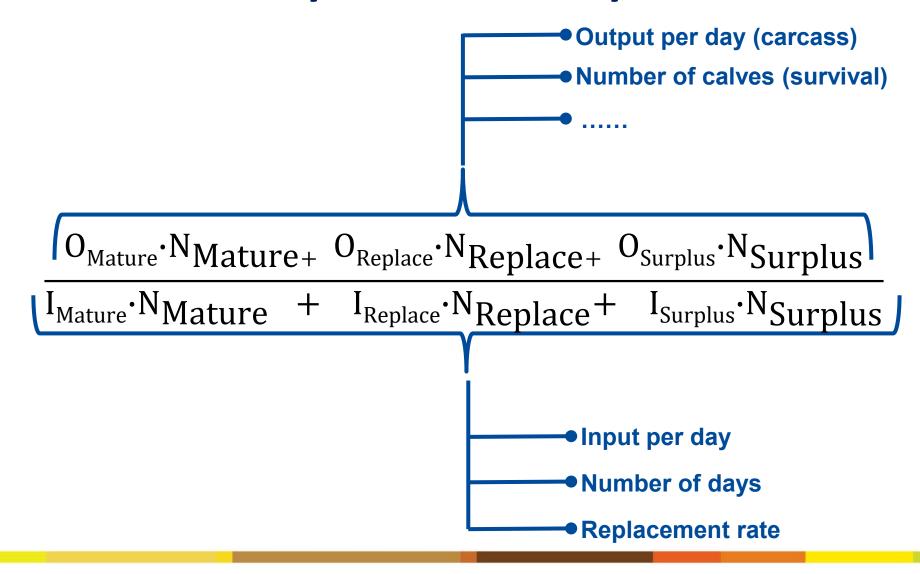
Breeding for feed and environmental efficiency


Donagh Berry Teagasc, Moorepark, Ireland

donagh.berry@teagasc.ie



Disentangling genetics from nutrition



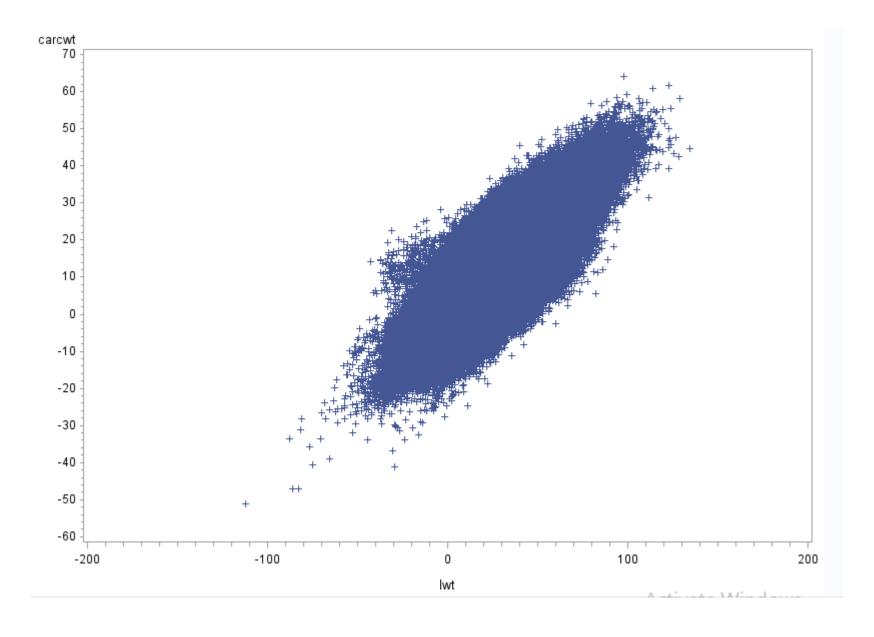
Recent strain took one third the duration to reach market weight eating one-third the feed;
85-90% of gain attributed to genetics

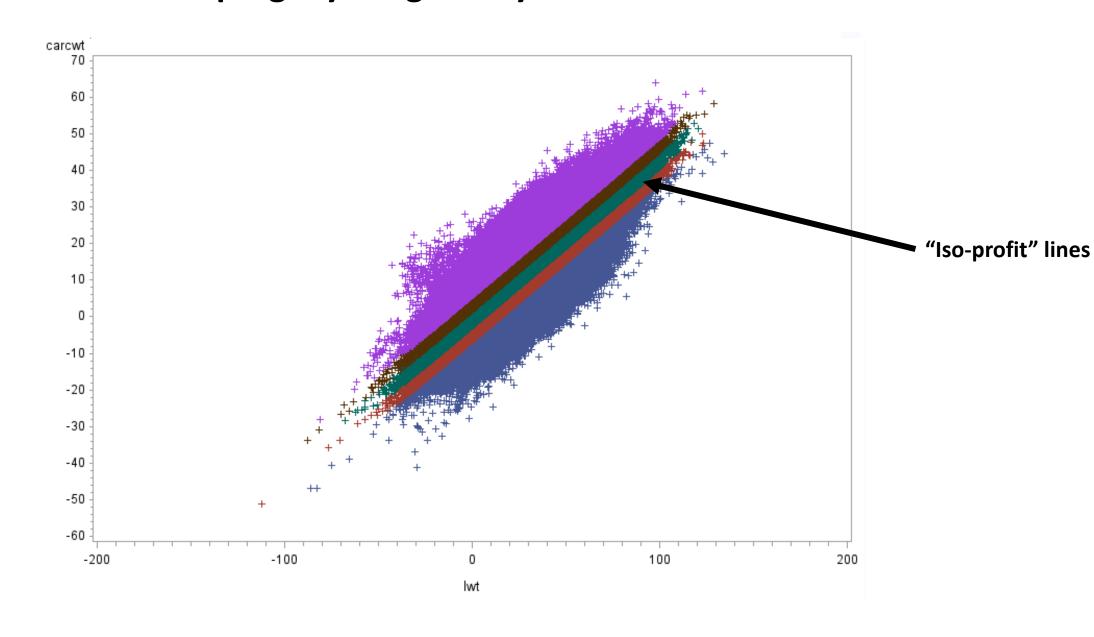
It's system efficiency!!

It's system efficiency!!

Efficiency=

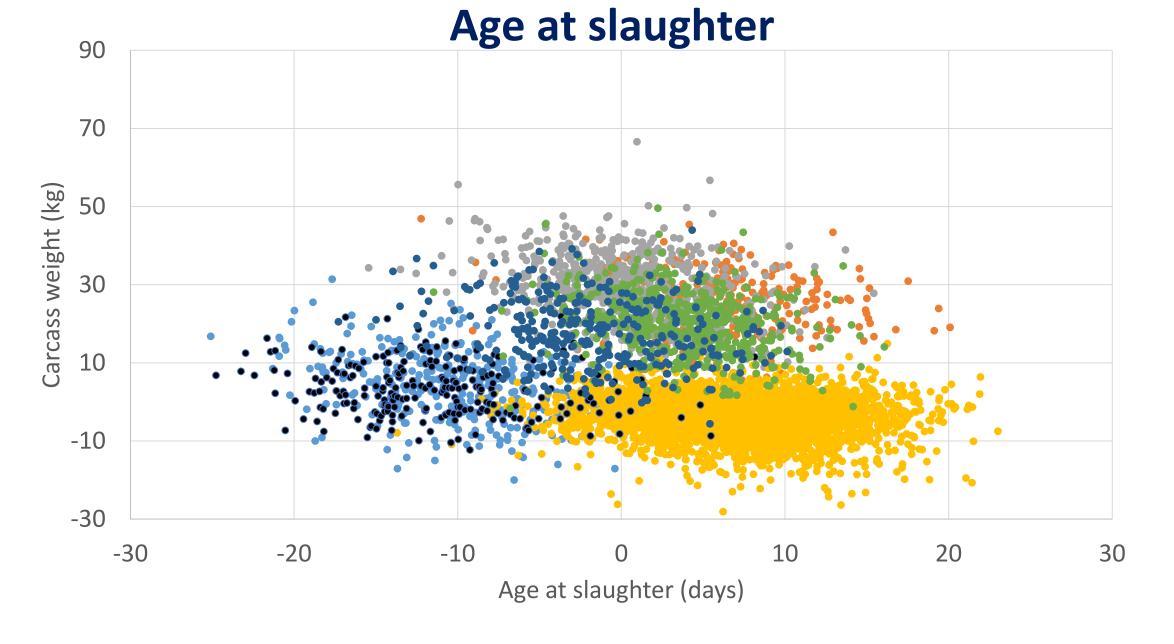
It's system efficiency!!

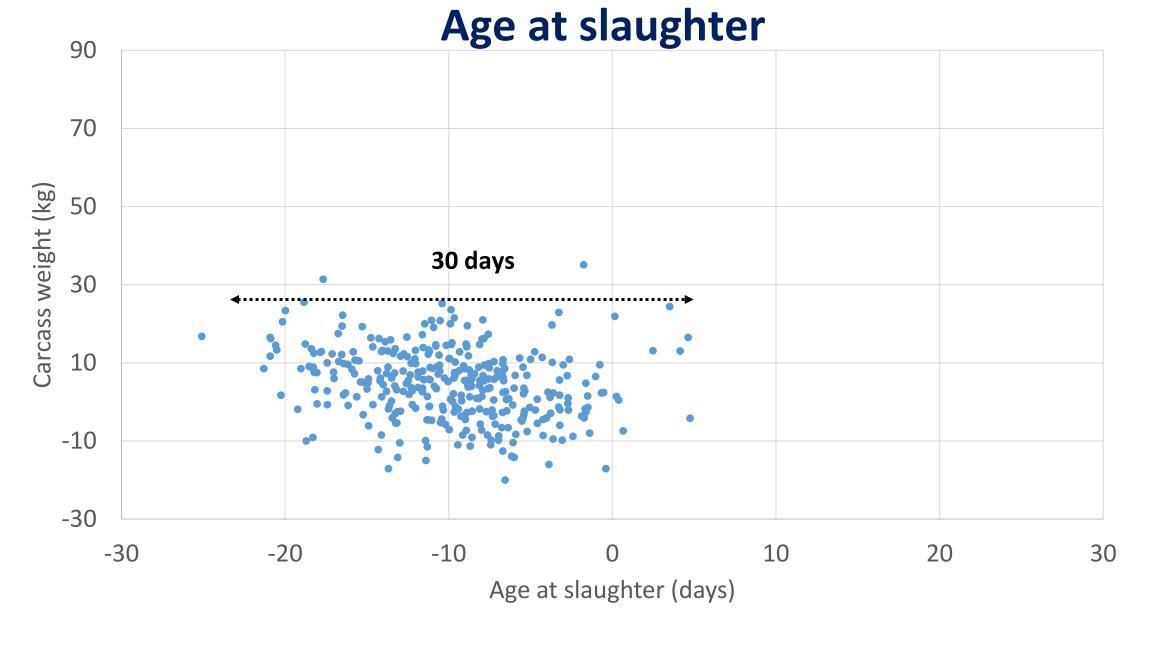

- Efficiency is not just carcass output
 - Nor is it just about feed intake in Tully
- Carcass value as a function of cow-years mated +


Question – how much progeny weight do you need to offset a heavier cow

- 100 kg cow live-weight → cost of €76 per year (+ heifer rearing)
- Assume progeny carcass price of €5.50
- Maintenance cost of 100 kg heavier cow is, on average, offset by a progeny with 14 kg more carcass (PTA)
- How does the index reflect this
 - +50 kg PTA for cow liveweight (100 kg heavier cow) * -€1.09 (includes carbon cost) = -€55 (cost)
 - +22 kg PTA carcass weight * €2.52 = €56 (revenue)
- Actually +50 kg PTA cow recuperates ~ €25 from heavier cull cow value
- But also costs money to rear a heavier cow as a hiefer

Question – how much progeny weight do you need to offset a heavier cow




Question – how much progeny weight do you need to offset a heavier cow

Same principle but applied to feed intake and carcass weight

- All else being equal
 - An animal eating 1 kg more per day will have a higher terminal index if its carcass is 10.5 kg heavier

Actual feed efficiency

Efficiency

- Feed conversion efficiency = intake ÷ growth
- Feed conversion = growth ÷ intake

Livestock & Poultry

•Broiler chickens: 1.5–1.8 (kg of feed per kg of weight gain)

•Turkeys: 2.0-2.5

•Pigs: 2.5–3.5

•Beef cattle: 5.0–8.0 (grain-fed), 8.0–12.0 (grass-fed)

•Sheep & goats: 4.0-6.0

Residual feed intake

These are (often)
on a daily basis
(and don't
consider the
mature herd)

Efficiency

Feed conversion efficiency = intake ÷ growth

End of beef chain is carcass not live-weight

Daily intake but it is total intake that is important (and not just the intake of the animal itself!)

Efficiency

Feed conversion efficiency = intake ÷ growth

Feed intake in Tully v grass

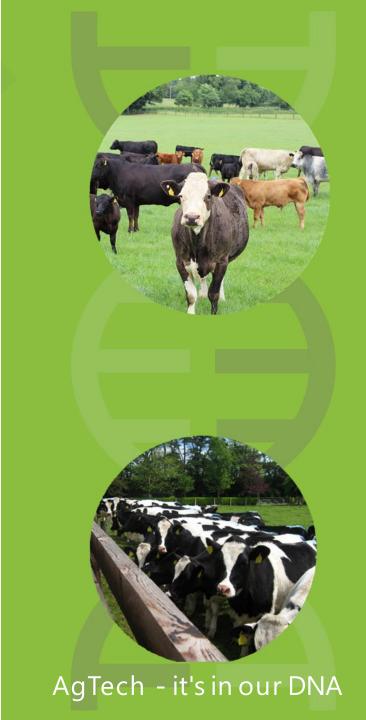
- Teagasc 236 feed intake records from growing animals
- Compared May and July grass feed intake with Tully genetic evaluations
- 0.58 to 0.93 kg DM increase in sire genetic merit for feed intake associated with an increase in grass feed intake in May and July
 - Worked equally well within and across breeds

Take home messages

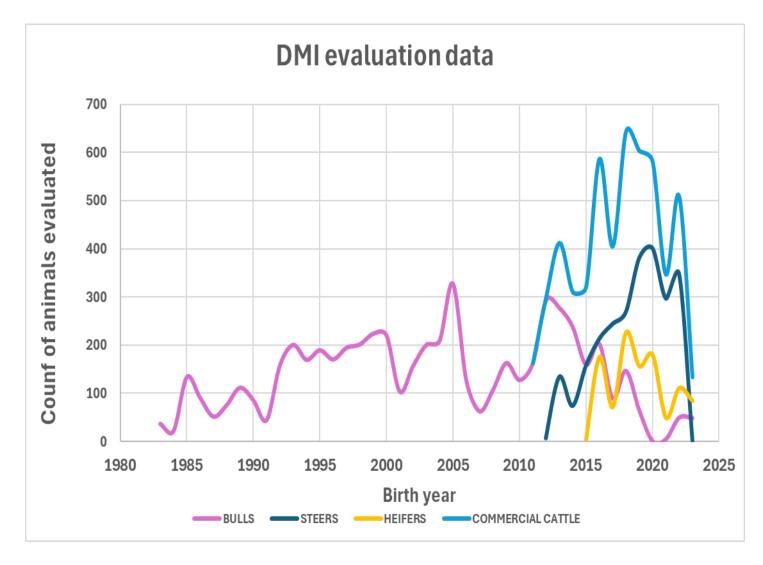
· Terminal index is capturing lifetime efficiency for a prime animal

Days eating x what it eats per day

Carcass weight * value (including opportunity cost no calf)


Replacement index is addressing lifetime efficiency for the system

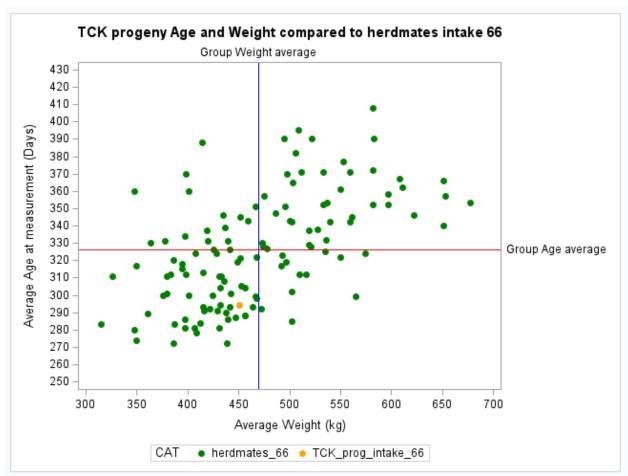
$$\frac{O_{\text{Mature}} \cdot N_{\text{Mature}} + O_{\text{Replace}} \cdot N_{\text{Replace}} + O_{\text{Surplus}} \cdot N_{\text{Surplus}}}{I_{\text{Mature}} \cdot N_{\text{Mature}} + I_{\text{Replace}} \cdot N_{\text{Replace}} + I_{\text{Surplus}} \cdot N_{\text{Surplus}}}$$

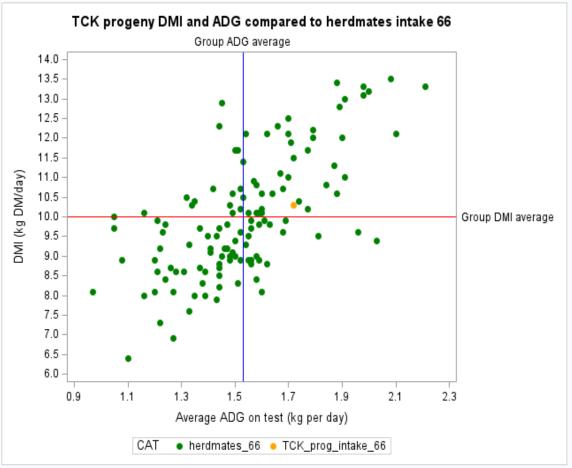


COF

Carnkern Titan (TCK) Feed intake query

Current evaluation

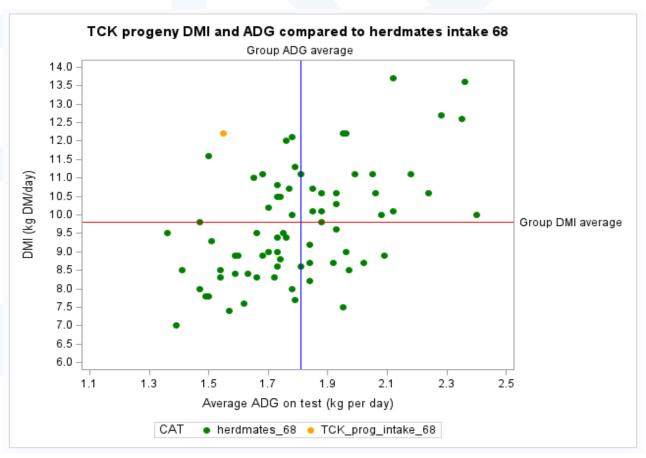



9,378 Feed intake observations. All from Tully test centre

Evaluation model

- Intake data is averaged to a single test average per animal
- Contemporary group (Intake), All unisex
- Age: Linear, Quadratic and Cubic effects
- Dam parity and dam age
- Heterosis
- Breed
- Direct Genetic effect

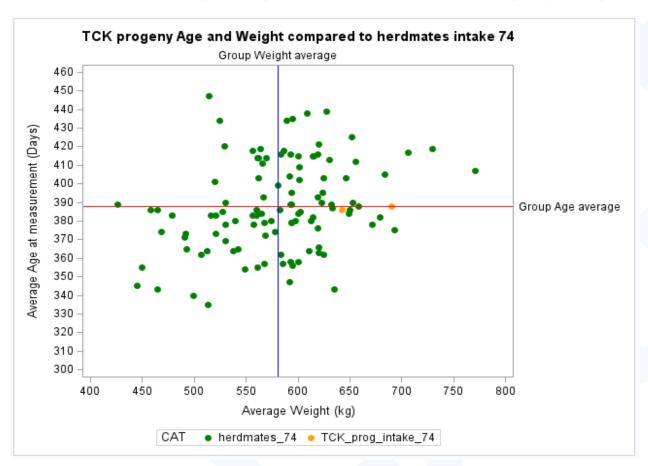
Intake 66: 125 bulls Sep 2001 - Mar 2002

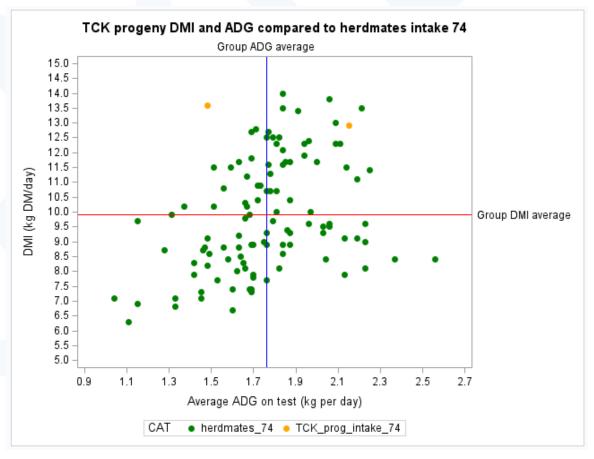

TCK progeny

Age rank: 28th youngest, Weight rank: 68th heaviest

DMI rank: 44th highest, ADG rank: 24th highest

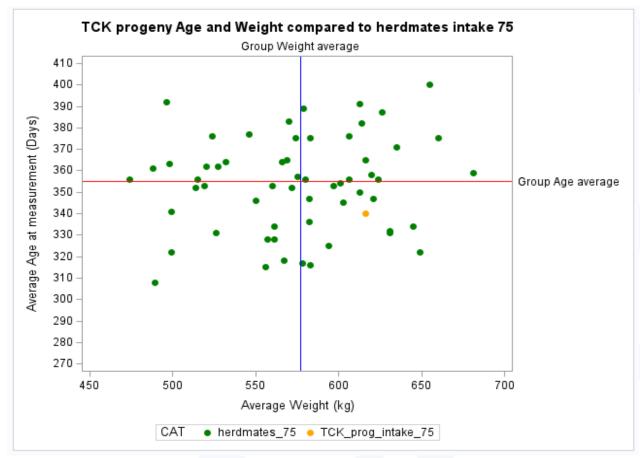
Intake 68: 77 bulls Oct 2002 - Feb 2003

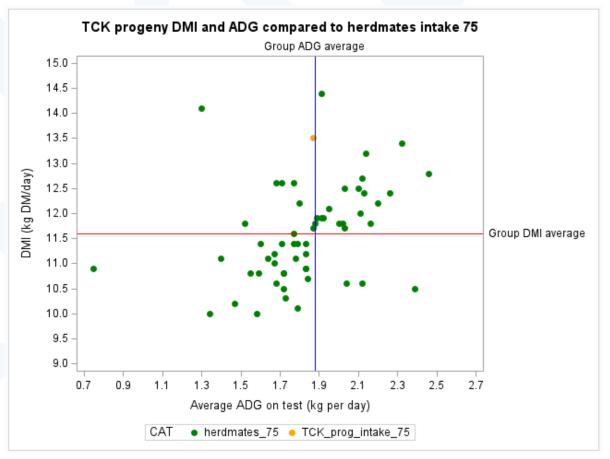

TCK progeny


Age rank: 19th youngest, Weight rank: 31st heaviest

DMI rank: 6th highest, ADG rank: 65th highest

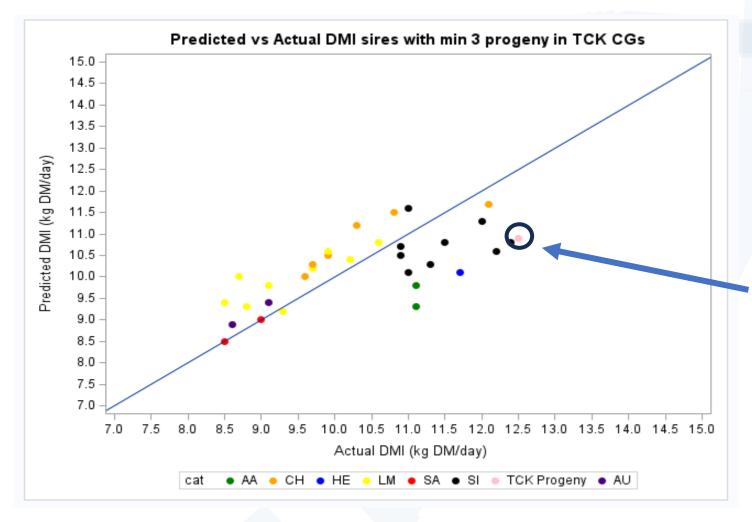
Intake 74: 111 bulls Nov 2004 - Feb 2005


TCK progeny


Ranking: Age=64th youngest, Weight=5th heaviest, DMI=3rd highest, ADG=94th highest

Ranking: Age=59th youngest, Weight=16th heaviest, DMI=8th highest, ADG=10th highest

Intake 75: 60 bulls Jul 2005 - Oct 2005


TCK progeny

Age rank: 17th youngest, Weight rank: 14th heaviest

DMI rank: 3rd highest, ADG rank: 26th highest

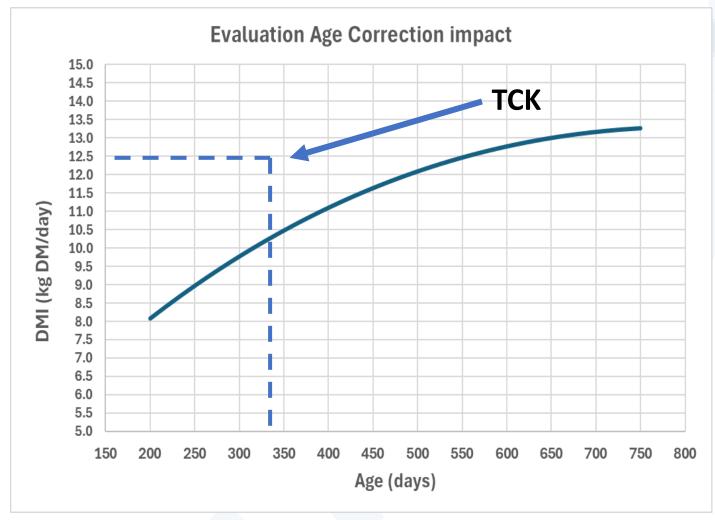
TCK v other sires in same Contemp groups

All 34 sires with min 3 progeny

Predicted DMI = 10.17 kg DM/ha

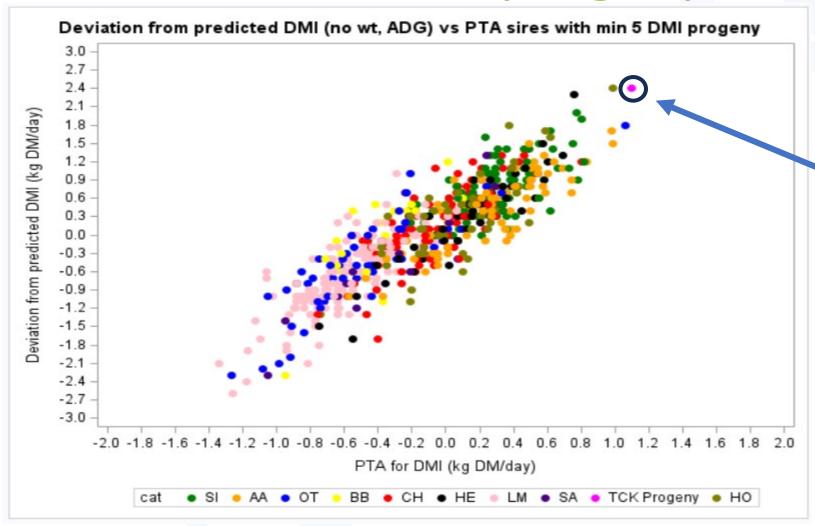
Actual DMI = 10.28 kg DM/ha

TCK progeny


Predicted DMI = 10.9 kg DM/ha

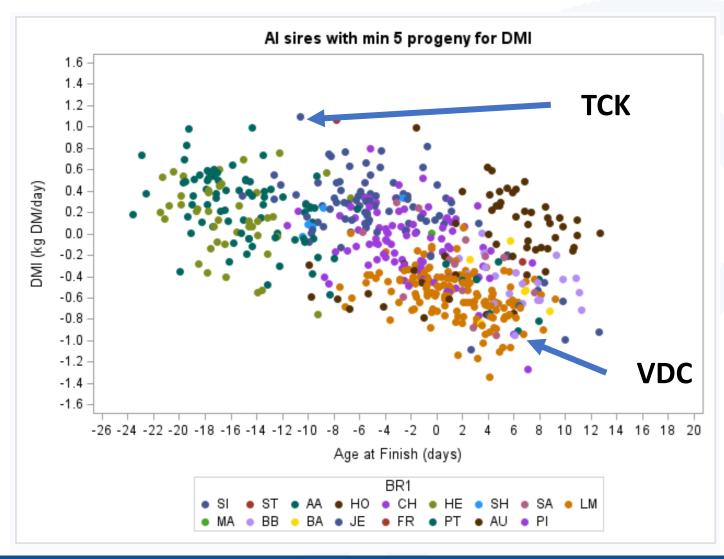
Actual DMI = 12.5 kg DM/ha

Predicted DMI = CG + age + ADG + Lwt + e


DMI Age associaton

Curve is from
 Linear, Quadratic
 and Cubic age
 effect adjustments

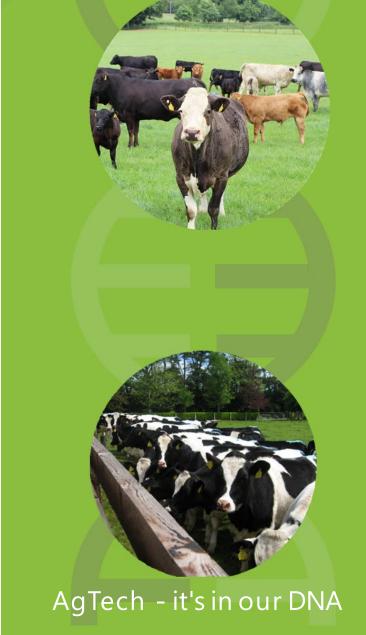
Sires with min of 5 progeny: all Tully data



TCK progeny

Predicted DMI = CG + age + e

PTA DMI vs PTA Age at Finish



- Unfavourable correlation -0.56
- Sires with high daily intake generally finish quicker
- TCK and VDC have progeny in same Tully intake groups
- TCK is....
- DMI: Btm 1% within breed
 Btm 1% across breed
- Age: Top 2% within breed
 Top 4% across breed
- VDC is....
- DMI: Top 1% within breed
 Top 1% across breed
- Age: Btm 23% within breed
 Btm 2% across breed

COF

Economic values

Weanling index

Current status

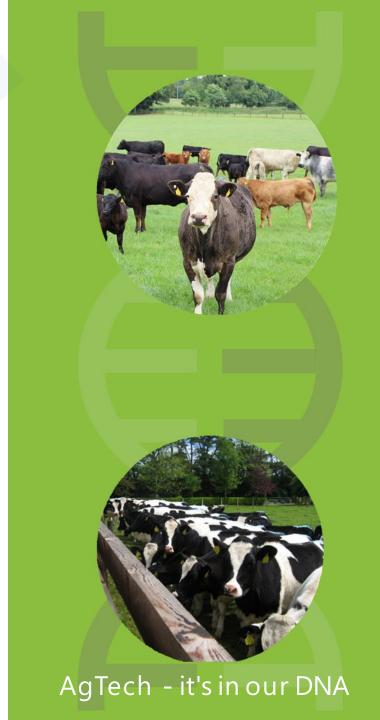
- Weanling price ptas presented at previous meetings
- Feedback received, others to come
- Genomic evaluation in development
- Presentation to next TAG meeting in March
- Subsequent steps
 - Publish test proofs
 - ➤ Get feedback

What group of animals to use for star calculations

Replacement Index Star base

	Animals	Btm 20%	Btm 40%	median	Top 40%	T op 20 %
Current	3,515,995	63.5	86.5	95.85	104.5	125.5
Scenario 1	1,773,303	70.5	92.5	101.68	110.5	131.5
Scenario 2	3,290,557	64.5	86.5	95.13	104.5	124.5

- Current: All suckler animals born in the last 5 years + beef*dairy dams born in last 5 years
- Alternative 1: All alive suckler animals + alive beef*dairy dams
- Alternative 2: All suckler animals born in the last 5 years



^{*} Sire must be known for inclusion in all options

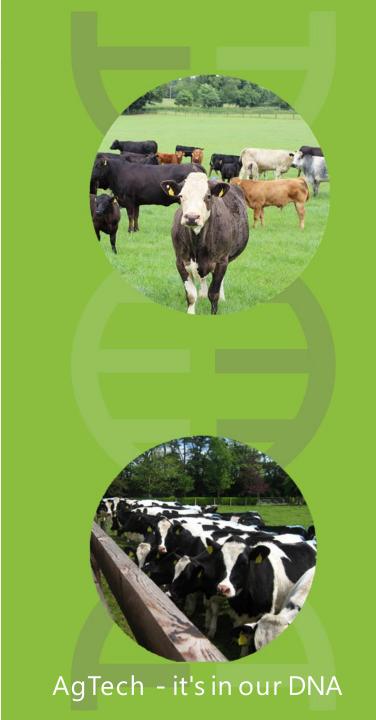
COF

Data Edits in Evaluations



Edits applied to weights in beef evaluations									
Weight Type	Less than (kg)	Greater than (kg)	ADG less than (kg)	ADG greater than (kg)					
0-10 day weight	25	115	-	-					
10-50 day weight	30	130	-	-					
50-150 day weight	55	350	0.4	2.0					
150-250 day weight	105	600	0.4	2.0					
250-350 day weight	145	870	0.4	2.0					
350-450 day weight	185	1003	0.4	2.2					
450-550 day weight	225	1100	0.4	2.2					
550-700 day weight	265	1200	0.4	2.2					

Carcass Evaluation	Carcass type	Lower age	Upper age	Comment
	YBull	300days	18mo	Must have factory carcass classification of YBULL
	Steer	300days	42mo	
	Heifer	300days	28mo	
	Cow	24mo	17yrs	
	We	eights >3.5 std dev o	of mean carcass weig	tht by Carcass type excluded


Sire must be known

Calving Evaluations	Feature	Action					
	Calving events parity 1-15	Included					
	Twin birth	Excluded					
	Known abortion	Excluded					
	Embryo Transfer (ET) birth	Excluded					
	Calving where dam <600 days	Excluded					
	Calving where dam >12,000 days	Excluded					
	Gestation <270 days or >300 days	Excluded					
Fertility Evaluations	Feature	Action					
	Flushing event (recorded)	Calving interval data from 365 days prior removed					
		All fertility records excluded					
	ET calf registration	All fertility records excluded					
	ET calf registration Calving interval < 300 days	All fertility records excluded Excluded					
	Calving interval < 300 days	Excluded					
	Calving interval < 300 days Calving interval > 1000 days	Excluded Excluded					
	Calving interval < 300 days Calving interval > 1000 days Calving interval 14 th parity +	Excluded Excluded Excluded					

Enhancing Farm Resistance to TB

Bovine Tuberculosis (bTB)

National Bovine Tuberculosis Statistics (Q4 Provisional)

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine 29 December 2024 (Q4 Provisional)

Reactors

41,630

(31 Dec 2023 - 29 Dec 2024)

28,868

(01 Jan 2023 - 31 Dec 2023)

Herds Restricted

6,142

(31 Dec 2023 - 29 Dec 2024)

5,078

(01 Jan 2023 - 31 Dec 2023)

Herd Incidence

6.00% 29 Dec 2024

4.89%

31 Dec 2023

5-year herd Incidence

2023 - **4.94**% 2022 - **4.31**% 2021 - 4

21 - 4.33%

020 – 4.38%

2019 - 3.72%

FARMERS JOURNAL

TB reactors jump 44% to over 41,000

& NOEL BARDON

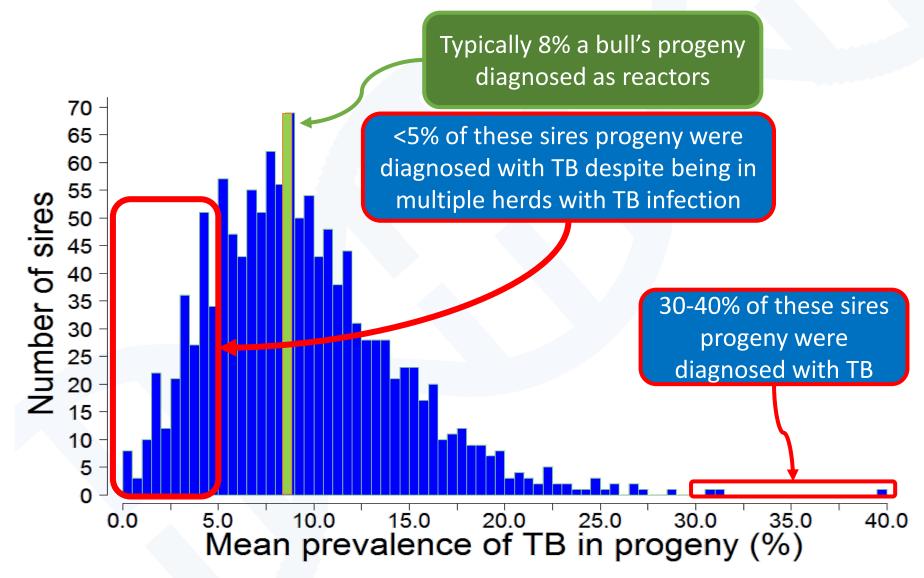
The number of TB reactors has hit the highest level recorded this century so far, Department of Agriculture data

weterinary inspector for Co Tipperary, told the north Tipperary IFA AGM in Nenagh this week that "contractrearing is essentially introducing cattle [to your herd]", which adds another level of risk to a farm.

ct-rearing

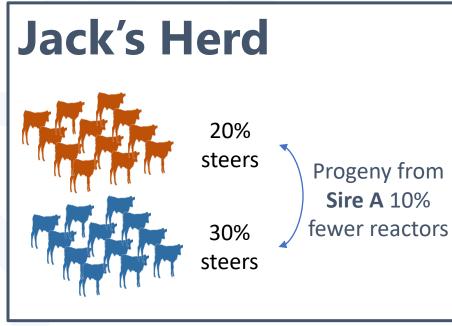
Total Expenditure end of Q4 2024

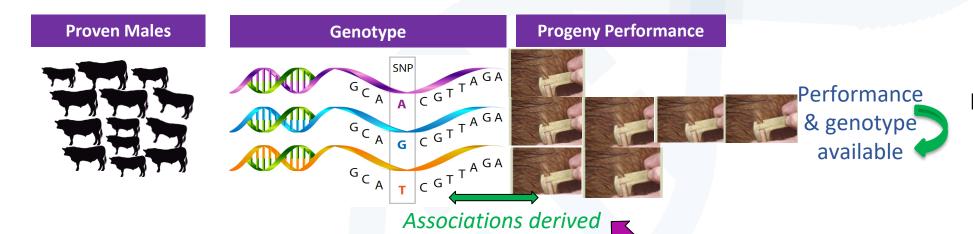
€100,616 Q4 2024 €74,283 Q4 2023



35%




Evidence of Genetic Resistance to TB in Cattle


Predicting Genetic Potential

- Performance compared within herd-mates
- If Sire A's progeny consistently has 10% fewer reactors, his

own genetic merit will be 10% better than Sire B (i.e., lower)

Genotype Contribution

Identify associations between phenotypes & SNPs to develop prediction equations

Young Calf Predicted Performance Genotype

CGTTAGA

Associations utilisea

data

Apply prediction equations to generate breeding value for animals without phenotypes


Validation

Genetically high risk of TB+ result

Genetically low risk of TB+ result

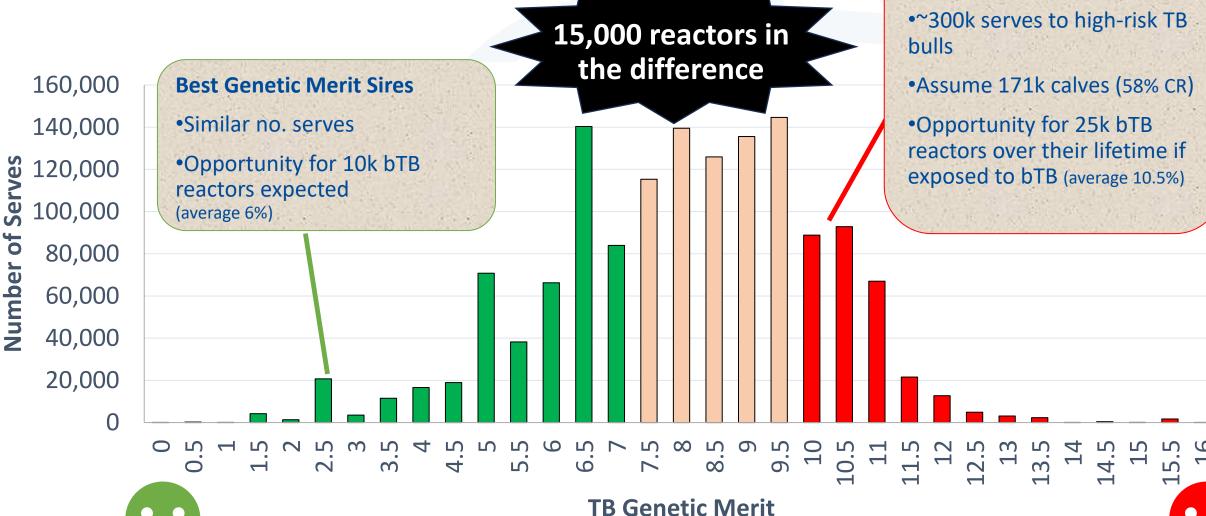
Risk based **Mean TB** Difference on genetic Incidence make-up Genetically 26% high risk of 9.3% additional TB+ result TB reactors Genetically In the high low risk of 6.9% risk group **TB+ result**

Genetic merit determined from ancestral data

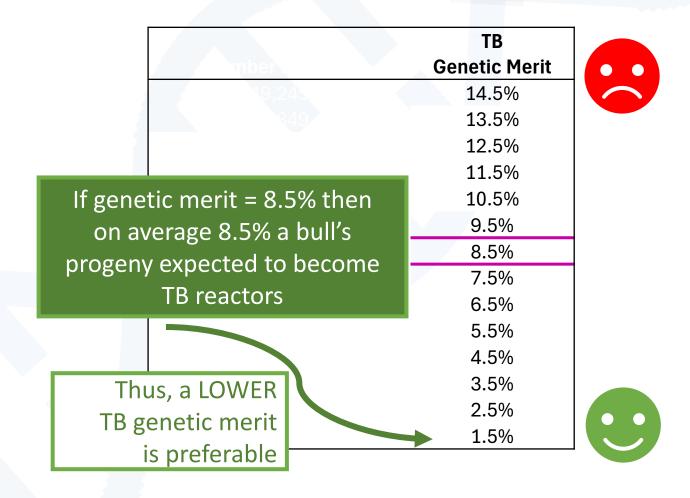
Risk of a TB+ result derived from genetic merit

Cattle tested for TB throughout life

Analyses of test results confirm a higher incidence of TB in cattle deemed high risk because of their genetics



Potential Impact of 2023 Bull Usage


Worst Genetic Merit Sires

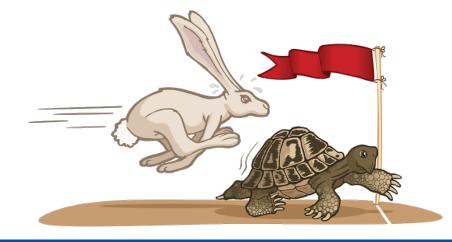
15,000 reactors in

Potential Gains for Breeding for TB Resistance

Potential Gains for Breeding for TB Resistance

Est. TB
Number reactors Genetic Merit

41,630 8.5%



Summary

- Breeding for bTB resistance is a PROACTIVE not reactive solution
 - Think of it like vaccination
- Breeding values available on all animals
 - For your animals: download your Profile on ww.ICBF.com
 - For individual animals: use the animal search
 - For choosing bulls for breeding: use Active Bull List, AI bull files or AI company catalogues, ask your technician
- Choose high Index bulls with lowest TB value to minimise risk of TB reactors
 - Less than 8% all herds
 - Ideally less than 6.5% (the lower the better!)

Genetics is cumulative and permanent


COF

ICBF – Cattle Finishing Trends

February, 2025

Slaughter Trends; Suckler

icbf Carcass Trends for Suckler Beef Cattle (i.e. Beef Dam X Beef Sire) Finished in IRL ('10 - '24) icbf

		ŀ	HEIFER							STEER					YOUNG BULL							
Year	Num.	Weight	Age Days	Age Mths	Fat	Conf	Year	Num.	Weight	Age Days A	ge Mths	Fat	Conf	Year	Num.	Weight	Age Days	Age Mths	Fat	Conf		
2010	266,673	303.1	807.6	26.6	8.73	7.79	2010	310,549	377.0	937.5	30.8	8.44	7.98	2010	98,199	383.3	602.4	19.8	6.67	9.75		
2011	257,889	313.2	794.2	26.1	8.98	8.08	2011	266,259	384.3	927.5	30.5	8.69	8.16	2011	115,504	391.7	595.6	19.6	6.67	9.89		
2012	221,109	320.4	781.3	25.7	9.05	8.25	2012	219,224	388.1	903.9	29.7	8.60	8.18	2012	121,729	403.0	592.7	19.5	6.86	10.08		
2013	243,116	313.5	788.5	25.9	8.66	8.17	2013	232,858	379.1	875.7	28.8	8.11	8.26	2013	101,570	390.9	589.8	19.4	6.56	10.06		
2014	272,058	323.3	805.6	26.5	8.95	8.35	2014	254,044	380.6	900.4	29.6	8.32	8.16	2014	111,210	392.8	586.6	19.3	6.68	10.15		
2015	256,618	330.6	800.9	26.3	9.16	8.51	2015	281,972	388.3	880.1	28.9	8.49	8.39	2015	97,434	401.1	568.4	18.7	6.89	10.35		
2016	249,519	333.3	787.3	25.9	9.02	8.49	2016	269,024	387.2	860.8	28.3	8.21	8.30	2016	113,900	397.8	560.1	18.4	6.66	10.20		
2017	263,644	332.5	791.0	26.0	9.00	8.38	2017	275,439	386.0	854.4	28.1	8.25	8.18	2017	111,990	398.0	559.1	18.4	6.53	10.06		
2018	269,836	332.4	798.2	26.3	8.86	8.40	2018	250,898	386.6	865.3	28.5	8.10	8.23	2018	115,495	401.8	562.6	18.5	6.58	10.09		
2019	261,980	339.7	804.2	26.5	9.19	8.55	2019	232,704	394.2	872.8	28.7	8.33	8.37	2019	117,686	407.5	565.4	18.6	6.64	10.14		
2020	271,992	343.8	807.1	26.5	9.20	8.55	2020	272,012	394.8	857.0	28.2	8.28	8.39	2020	79,918	407.1	559.0	18.4	6.64	10.02		
2021	241,873	339.3	792.7	26.1	9.11	8.51	2021	262,141	390.4	833.3	27.4	8.16	8.47	2021	72,631	403.0	544.7	17.9	6.70	10.02		
2022	237,458	339.8	792.5	26.1	8.68	8.33	2022	248,920	392.1	832.2	27.4	7.79	8.44	2022	72,276	404.2	547.5	18.0	7.00	9.73		
2023	213,986	336.2	804.6	26.5	8.48	8.24	2023	222,497	388.3	845.8	27.8	7.55	8.32	2023	58,942	402.3	548.0	18.0	6.90	9.76		
2024	225,764	335.4	821.7	27.0	8.41	8.21	2024	222,346	385.5	862.0	28.4	7.53	8.29	2024	59,199	402.7	564.6	18.6	6.88	9.63		
201	0-2024	32.2	14.1	0.5	-0.32	0.42	2010	0-2024	8.5	-75.4	-2.5	-0.91	0.31	2010	0-2024	19.3	-37.7	-1.2	0.21	-0.12		
202	3-2024	-0.8	17.1	0.6	-0.08	-0.03	2023	3-2024	-2.8	16.2	0.5	-0.03	-0.02	2010	0-2024	0.4	16.6	0.5	-0.02	-0.13		

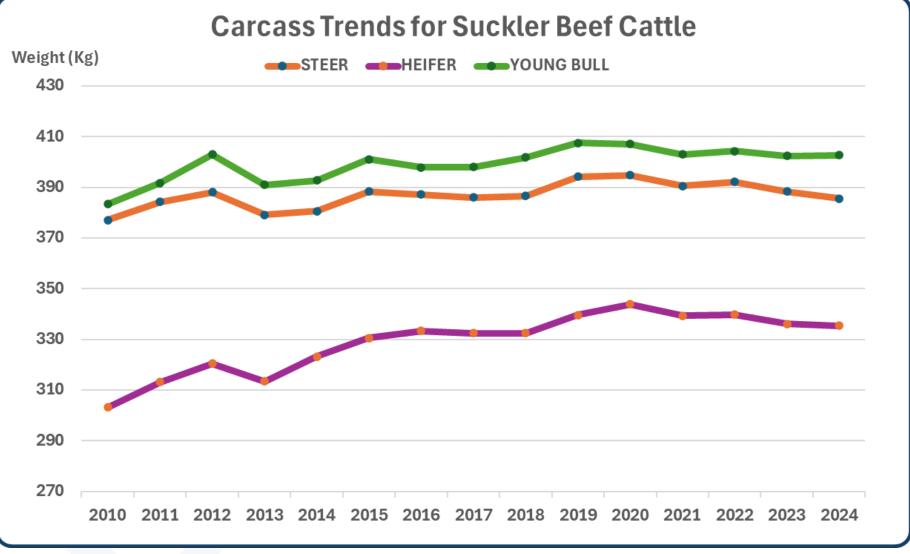
Slaughter Trends; Dairy x Beef

icbf Carcass Trends for Dairy Beef Cattle (i.e. Dairy Dam X Beef Sire) Finished in IRL ('10 - '24) icbf

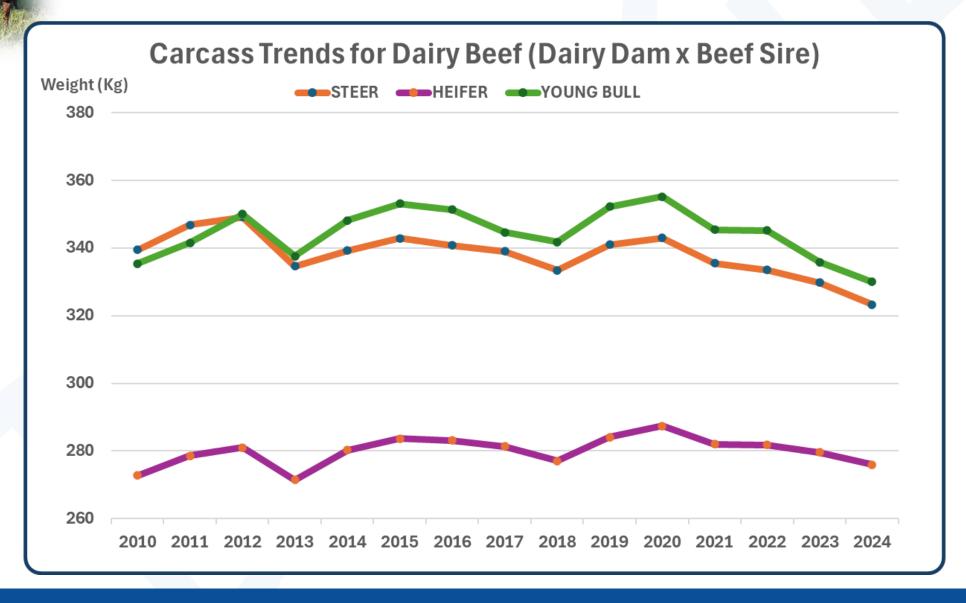
		ŀ	IEIFER							STEER						YO	UNG BU	LL		
Year	Num.	Weight	Age Days	Age Mths	Fat	Conf	Year	Num.	Weight	Age Days	Age Mths	Fat	Conf	Year	Num.	Weight	Age Days	Age Mths	Fat	Conf
2010	132,916	272.7	822.4	27.1	8.90	5.86	2010	186,009	339.6	923.5	30.4	8.64	5.99	2010	18,182	335.4	634.8	20.9	6.68	7.46
2011	107,733	278.6	807.0	26.5	9.25	6.02	2011	148,177	346.9	921.2	30.3	8.89	6.12	2011	21,898	341.6	631.9	20.8	6.70	7.48
2012	91,927	281.0	783.1	25.8	9.34	6.03	2012	121,935	349.2	896.7	29.5	8.85	6.04	2012	23,983	350.1	634.9	20.9	6.90	7.55
2013	92,132	271.5	784.1	25.8	8.97	5.83	2013	124,610	334.7	878.2	28.9	8.39	5.88	2013	18,368	337.7	625.1	20.6	6.60	7.41
2014	104,617	280.3	789.6	26.0	9.43	5.96	2014	139,110	339.2	881.6	29.0	8.74	5.86	2014	17,810	348.2	636.8	20.9	6.88	7.60
2015	107,704	283.7	770.4	25.3	9.62	5.99	2015	142,912	342.9	856.7	28.2	8.92	5.93	2015	15,284	353.2	616.8	20.3	7.04	7.63
2016	127,720	283.1	755.8	24.9	9.45	5.87	2016	167,270	340.9	836.3	27.5	8.69	5.76	2016	21,611	351.4	618.6	20.3	6.87	7.43
2017	153,584	281.4	757.5	24.9	9.45	5.70	2017	200,624	339.1	831.8	27.4	8.73	5.61	2017	22,810	344.7	615.9	20.3	6.81	7.04
2018	168,681	277.1	758.4	24.9	9.29	5.59	2018	206,189	333.4	830.7	27.3	8.49	5.48	2018	26,530	341.8	612.8	20.2	6.83	6.98
2019	194,173	284.1	766.2	25.2	9.68	5.77	2019	211,212	341.0	836.9	27.5	8.86	5.70	2019	30,709	352.3	629.5	20.7	7.03	7.11
2020	205,980	287.4	767.8	25.3	9.70	5.73	2020	238,053	343.0	832.2	27.4	8.87	5.65	2020	20,254	355.2	628.7	20.7	7.02	7.05
2021	205,783	282.0	750.4	24.7	9.54	5.70	2021	241,648	335.6	807.9	26.6	8.67	5.67	2021	18,140	345.4	615.5	20.2	7.03	6.90
2022	212,680	281.8	753.2	24.8	9.20	5.57	2022	253,676	333.6	803.7	26.4	8.29	5.60	2022	17,912	345.2	617.1	20.3	7.31	6.52
2023	206,729	279.6	771.7	25.4	8.99	5.50	2023	242,124	329.8	821.8	27.0	8.03	5.46	2023	14,471	335.9	613.6	20.2	7.12	6.36
2024	230,605	275.9	776.7	25.5	8.89	5.46	2024	261,567	323.3	823.8	27.1	7.91	5.45	2024	17,396	330.1	615.4	20.2	7.02	6.26
201	0-2024	3.2	-45.8	-1.5	-0.01	-0.40	2010	0-2024	-16.3	-99.7	-3.3	-0.72	-0.54	2010)-2024	-5.4	-19.3	-0.6	0.35	-1.21
202	3-2024	-3.7	5.0	0.2	-0.10	-0.04	2023	3-2024	-6.5	1.9	0.1	-0.12	-0.01	2010)-2024	-5.8	1.9	0.1	-0.10	-0.10

Slaughter Trends; Dairy

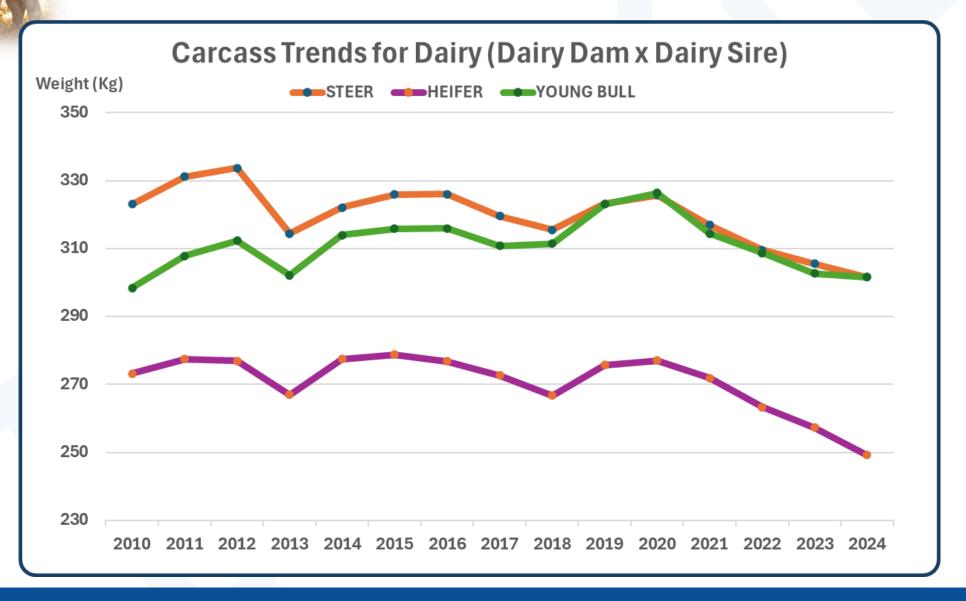
icbf Carcass Trends for Dairy Cattle (i.e. Dairy Dam X Dairy Sire) Finished in IRL ('10 - '24) icbf


		ŀ	HEIFER						,	STEER						YO	UNG BU	LL		
Year	Num.	Weight	Age Days	Age Mths	Fat	Conf	Year	Num.	Weight	Age Days /	Age Mths	Fat	Conf	Year	Num.	Weight	Age Days	Age Mths	Fat	Conf
2010	17,083	273.2	974.6	32.1	7.71	3.96	2010	126,914	323.0	907.6	29.9	7.68	4.23	2010	28,806	298.4	628.7	20.7	5.57	5.08
2011	20,485	277.5	955.9	31.4	8.09	4.00	2011	119,963	331.1	914.0	30.1	7.99	4.36	2011	36,588	307.8	631.0	20.8	5.64	5.23
2012	23,063	276.9	932.9	30.7	8.16	3.89	2012	100,022	333.7	892.4	29.4	7.89	4.30	2012	53,448	312.3	625.1	20.6	5.76	5.14
2013	25,231	266.9	908.3	29.9	7.76	3.75	2013	144,783	314.3	849.7	27.9	7.21	4.10	2013	54,861	302.2	621.0	20.4	5.55	4.95
2014	25,985	277.4	919.6	30.3	8.23	3.87	2014	180,832	322.1	884.3	29.1	7.66	4.03	2014	51,825	313.9	643.1	21.2	5.88	5.13
2015	26,196	278.8	920.8	30.3	8.35	3.79	2015	180,344	325.9	872.9	28.7	7.88	4.09	2015	39,397	315.8	634.6	20.9	5.95	5.14
2016	27,788	276.8	904.4	29.7	8.19	3.65	2016	164,826	326.1	861.0	28.3	7.71	3.96	2016	50,483	315.9	628.4	20.7	5.86	5.01
2017	29,181	272.7	885.5	29.1	8.17	3.54	2017	187,257	319.5	839.7	27.6	7.65	3.81	2017	58,352	310.8	628.9	20.7	5.86	4.75
2018	29,927	266.7	881.6	29.0	7.89	3.42	2018	188,651	315.5	843.7	27.8	7.46	3.70	2018	53,703	311.5	636.6	20.9	5.97	4.72
2019	26,731	275.7	899.3	29.6	8.48	3.62	2019	151,917	323.2	857.1	28.2	7.86	3.90	2019	51,490	323.1	641.4	21.1	6.20	4.96
2020	27,522	277.0	894.5	29.4	8.47	3.58	2020	167,351	325.6	855.3	28.1	7.88	3.90	2020	33,544	326.3	650.1	21.4	6.17	4.87
2021	24,811	271.9	876.3	28.8	8.27	3.59	2021	160,052	316.9	823.9	27.1	7.63	3.91	2021	34,379	314.4	635.9	20.9	6.19	4.67
2022	29,063	263.4	852.1	28.0	7.96	3.45	2022	172,496	309.5	808.2	26.6	7.10	3.80	2022	35,529	308.7	630.5	20.7	6.28	4.27
2023	30,855	257.3	847.9	27.9	7.55	3.31	2023	169,906	305.6	829.0	27.3	6.79	3.64	2023	30,841	302.7	632.4	20.8	6.14	4.15
2024	41,807	249.2	845.6	27.8	7.22	3.21	2024	171,212	301.6	840.4	27.6	6.77	3.66	2024	25,063	301.6	641.0	21.1	6.07	4.17
2010)-2024	-24.0	-129.0	-4.2	-0.49	-0.75	201	0-2024	-21.4	-67.2	-2.2	-0.91	-0.57	2010)-2024	3.2	12.3	0.4	0.50	-0.91
2023	3-2024	-8.1	-2.3	-0.1	-0.33	-0.10	202	3-2024	-4.0	11.4	0.4	-0.02	0.02	2010)-2024	-1.1	8.6	0.3	-0.07	0.01

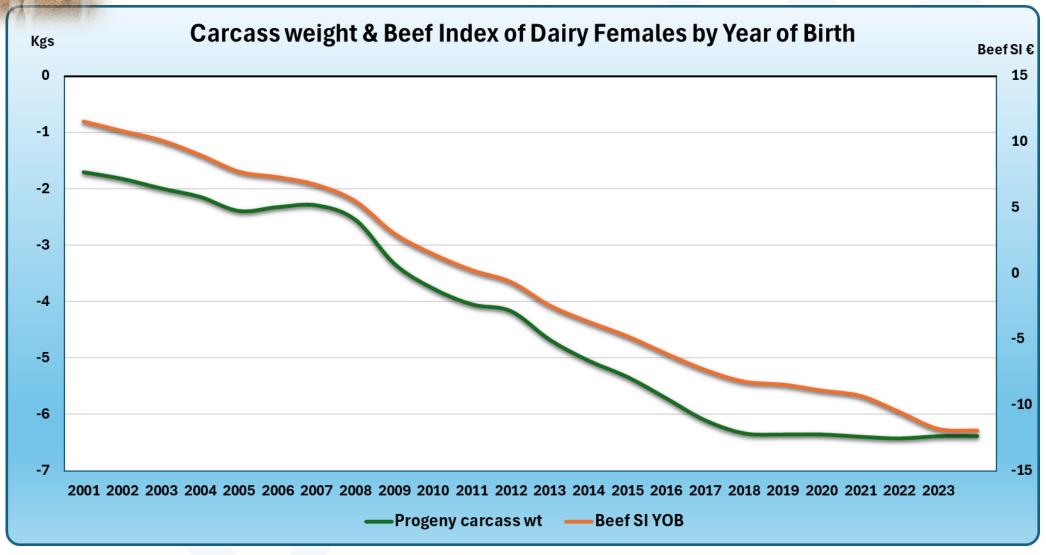
Carcass Weight; Suckler Beef Cattle



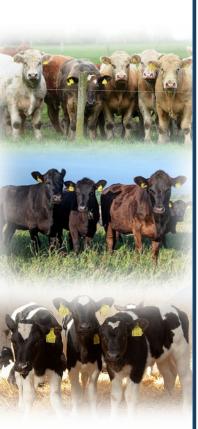
Carcass Weight; Dairy Beef Cattle

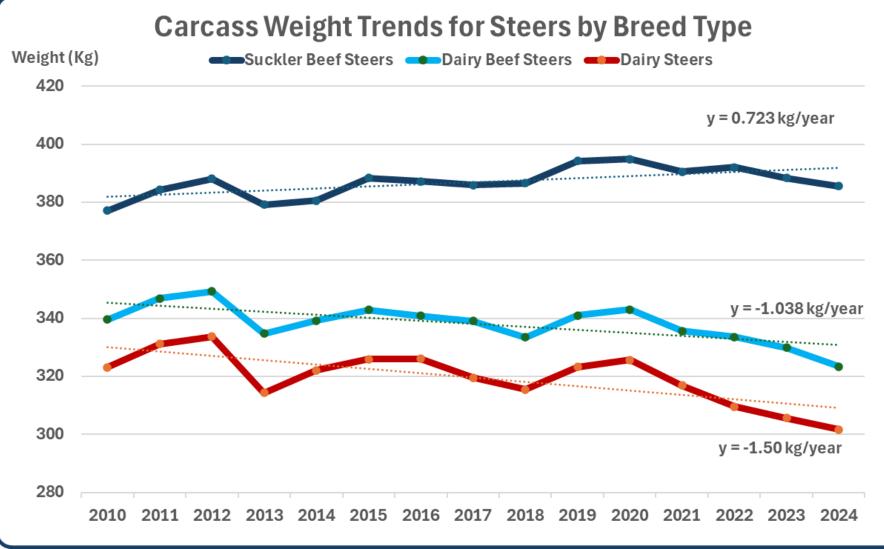


Carcass Weight; Dairy Cattle

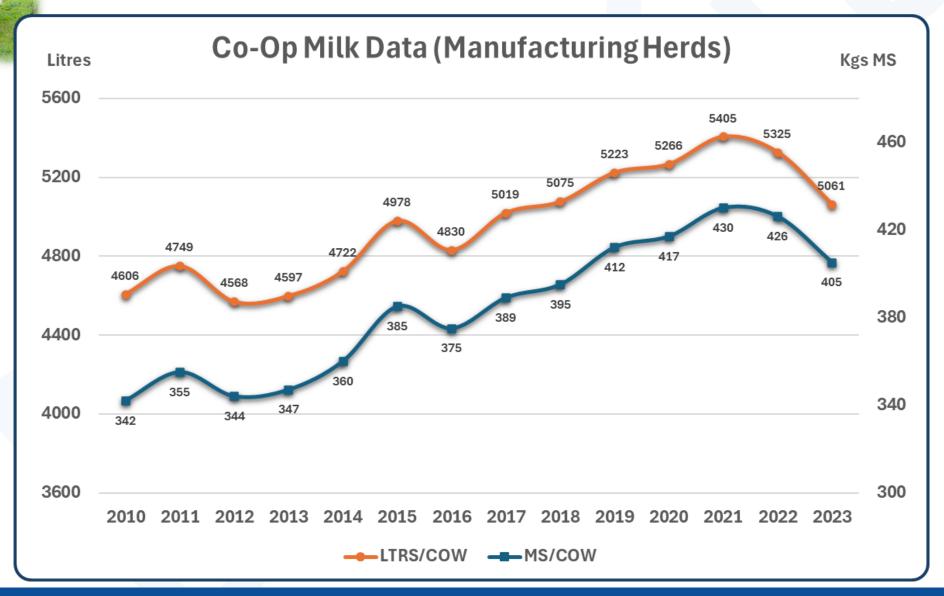


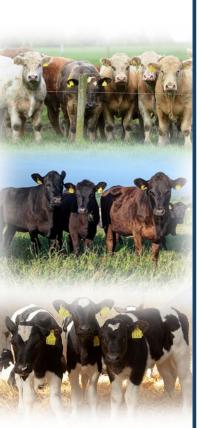
Carcass Weight PTA; Dairy

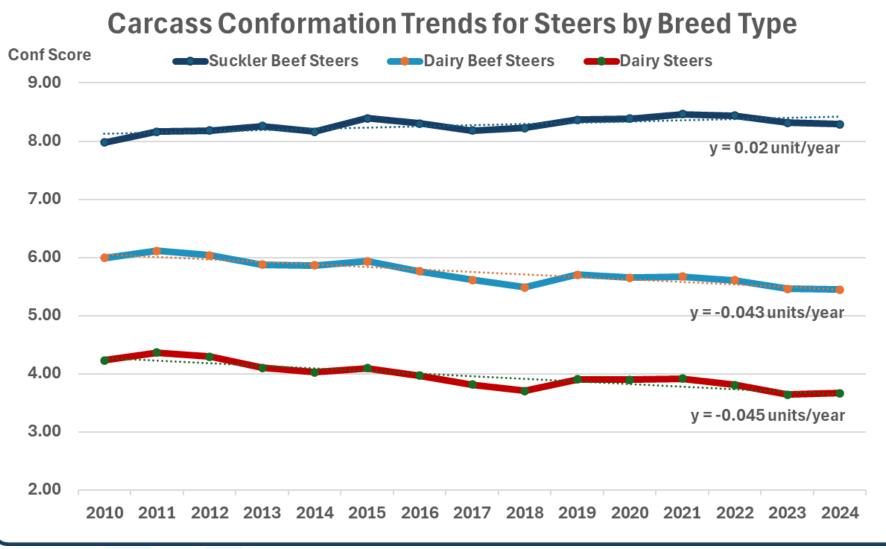




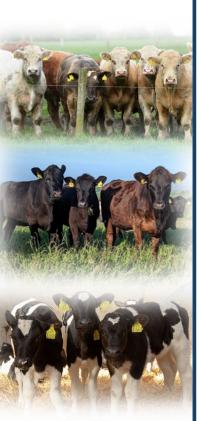
Carcass Weight; Steers by Breed Type

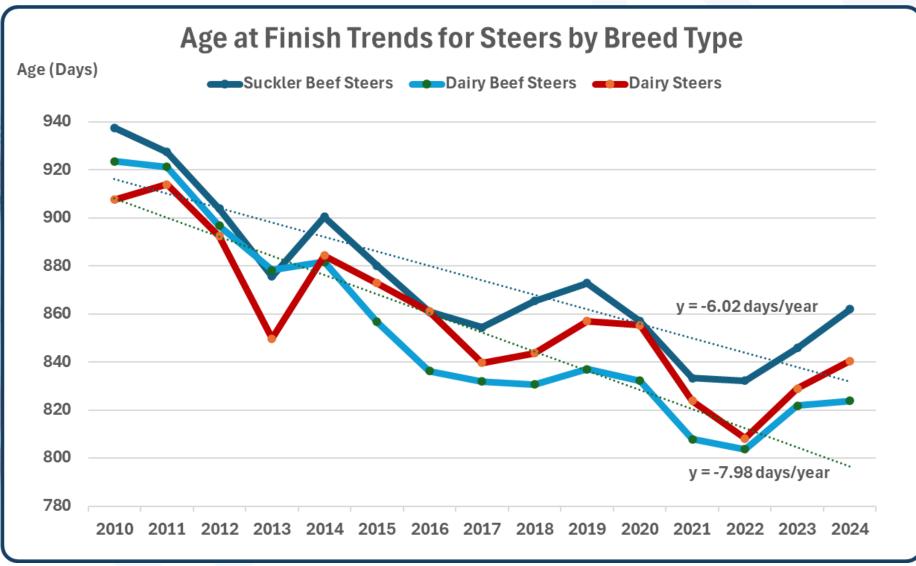



Dairy Co-Op Milk Data Trends

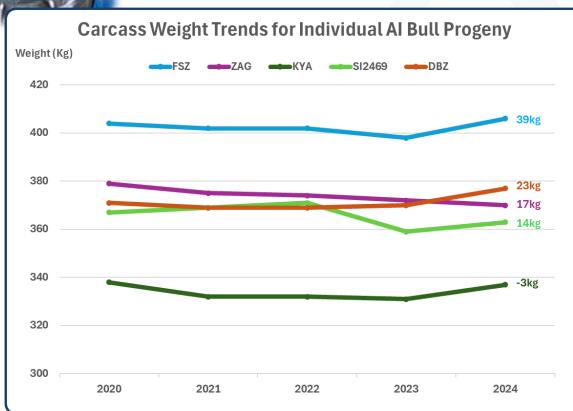


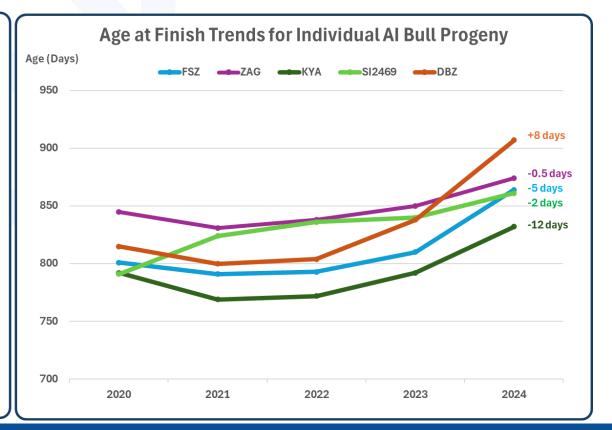
Carcass Conf.; Steers by Breed Type



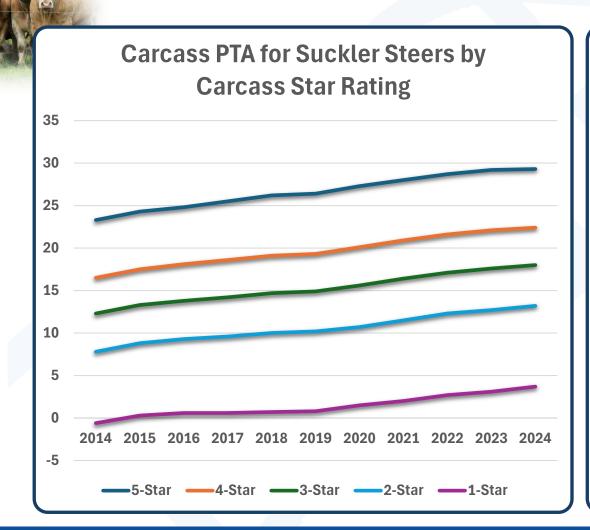


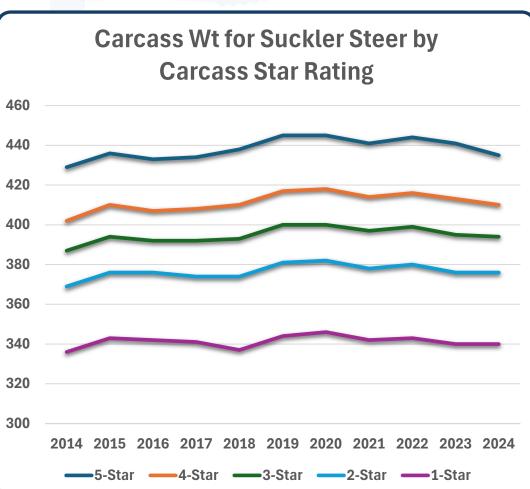
Age at Finish; Steers by Breed Type




Carcass Wt. of Progeny by Al bulls

Code	Name	Breed	Number
FSZ	FISTON	СН	37,005
ZAG	CASTLEVIEW GAZELLE	LM	36,120
KYA	CORNAMUCKLA LORD HARDY K222	AA	6,416
SI2469	LISNACRANN FIFTY CENT	SI	3,574
DBZ	MANITOU DE BELLE EAU	ВВ	1,301





Suckler; Steers by Carcass Star Rating

69

Summary

"the quality of cattle has been disimproving since the star system was introduced"

Call for ICBF change at Wexford IFA meeting

PAT O'TOOLE

POLITICAL CORRESPONDENT potoole@farmersjournal.ie

Wexford cattle farmers expressed their frustration with ICBF at the county's Irish Farmers' Association (IFA) AGM on Monday night.

One farmer proposed that a motion be forwarded to the IFA's national council, calling for radical and urgent change to the star rating system, saying "the quality of cattle has been disimproving since the star system was introduced".

A number of other speakers weighed in behind him,

highlighting the lack of confidence the breed societies have in the Euro-stars guide. One suckler farmer spoke of how there was too little emphasis on the growth potential and kill out weights of cattle, to the detriment of continental cattle breeds.

There were claims that the ICBF board is dominated by dairy representatives.

When the matter was raised again at the end of a marathon meeting, it was agreed that the proposers would prepare an exact wording for a motion to be presented to the March county executive.

Suckler Cattle quality is not declining because of the Euro-Stars.

- Dairy Beef & Dairy Cattle quality has been declining but not due to the Euro-Stars.
 - > It is due to the decline in beef merit of the dairy cow.

International data

Interbeef developments

- Recent developments at Interbeef level
- France ongoing participation in major doubt beyond 2025
- May necessitate removal of French data from Interbeef evaluations
- Potentially may need a return to bilateral agreement with France (previously INRA and now Geneval) to share ebvs
- Will find out French position in March 2025