

Agenda

- Introduction
 - Carbon Footprinting in SDAS
 - Improving reporting, Increasing visibility
- Version 4 Model Calculation Changes
 - Summary of changes
 - ► Effect of changes
 - ► Herd examples
- Accessing Updated Carbon Footprints
 - ► For farmers
 - ► For Co-Ops
- ► Future Development

Carbon Footprinting in SDAS

- ▶ Since 2014 over 70,000 SDAS audits have been conducted.
- A carbon footprint has been calculated for 95% of these audits.
- Data used in these calculations comes from
 - ► The SDAS audit sustainability survey,
 - AIMS
 - Dairy Co-ops
- Figures reported back to farmers and increased visibility now necessary.
- Need to support the understanding of GHG emission counting and carbon footprinting.
- Need to ensure highest level of accuracy possible.

= Data In Pre Go-Live Model Data Flows = Data Out AIMS **INPUTS Dairy Carbon** Bord Bia Sustainability Footprint Survey Systems Model Milk Data, Dairy Carbon Co-Ops Footprint Model **OUTPUTS** Carbon Footprint Teagasc Model & **Updates**

= Data In Post Go-Live Model Data Flows = Data Out Sustainability Survey Bord Bia Systems Milk Data, AIMS Co-Ops **ICBF Systems** Carbon **Dairy Carbon INPUTS** Footprint **Dairy Carbon Footprint** Teagasc Model & Model Footprint **Updates OUTPUTS** Model

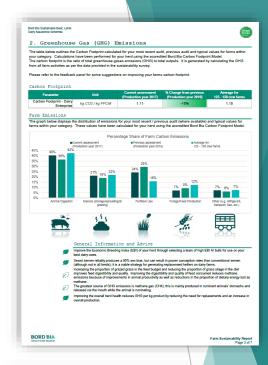
Improving Accuracy

- Sustainability Survey updates, now more accurately capturing information relating to;
 - Slurry application methods and timing
 - Types of fertilizer applied including protected urea
 - Concentrate feeding
- Input sources, improved categorization of animals on farm.
 - ▶ AIMS data now available through ICBF eliminating the need for some herd profiling assumptions to be applied.
- ▶ Model improvements, based on more up to date research.
 - Emission factor changes
 - incorporation of new technologies

Improving Reporting

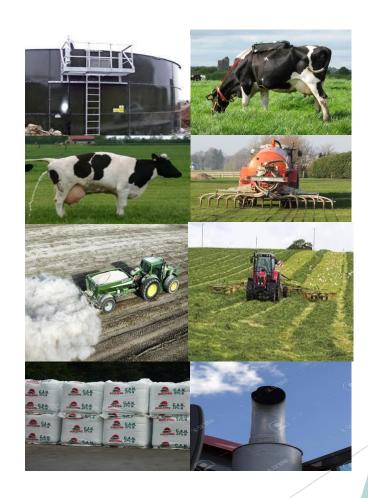
- Bord Bia Farm Feedback Report launched in 2020.
- Providing farmers with visibility on their own farm performance against previous assessments and peers.
- Aim to outline how farm inputs & activities contribute to GHG emissions and make the carbon footprint metric visible.
- Guidance element was formulated in collaboration with Teagasc and is focused on measures set out in the Teagasc MACC curve.

Striving for alignment with other reports available to farmer



Increasing Visibility

- Bord Bia Farm Feedback Report
 - Generated after every SDAS audit
 - ► Includes carbon footprint and breakdown of emission sources
- SignPost Programme
 - Extensive communications around the SignPost Programme will increase awareness.
 - Being made visible at SignPost Farm walks.
 - "Know your Number" campaign.
- Milk statements
- Co-Op reports



Dairy Farm Greenhouse Gases (GHG's)

- Methane (CH₄)
- Nitrous oxide (N₂O)
- Carbon dioxide (CO₂)
- Warming potential of GHG's measured in terms of CO₂
 - ► 1 kg $CH_4 = 25$ kg CO_2 equiv.
 - ► 1 kg N_2O = 298 kg CO_2 equiv.


Teagasc Carbon Audit Tool

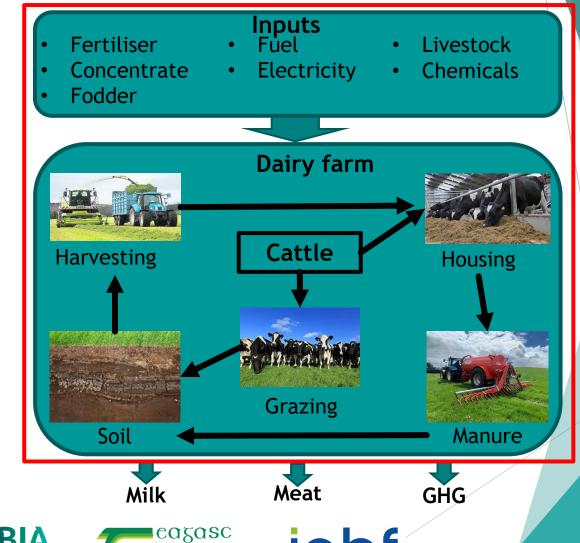
- Expensive to measure multiple emissions from many farms
- Carbon Audit Cost effective simulation model i.e. carbon calculator
 - Certified by Carbon Trust in 2012
- Calculates farm's annual greenhouse gas emissions in carbon equivalents (CO_2e)
 - Based on experimental data "Emission factors"
 - Measured farm input and output information

Life Cycle Assessment (LCA)

Includes:

- Greenhouse gas emissions released by onfarm processes
- Greenhouse gas emissions released during the production of farm inputs

Boundary

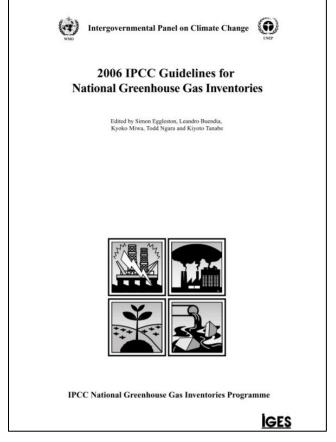

Cradle-to-farm gate

Unit

- Global warming potential (kg CO₂-eq)
- kg fat and protein corrected milk (FPCM;
 4.0%, 3.3%).

Data

Sustainability Dairy Assessment Scheme

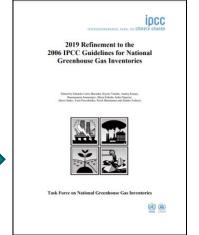


Research Updates

Science of the Total Environment 568 (2016) 327-338

Contents lists available at ScienceDirect

Science of the Total Environment


journal homepage: www.elsevier.com/locate/scitotenv

Improving and disaggregating N_2O emission factors for ruminant excreta on temperate pasture soils

D.J. Krol a.*, R. Carolan b, E. Minet a, K.L. McGeough b, C.J. Watson b, P.J. Forrestal a, G.J. Lanigan a.*, K.G. Richards a

is

International Fertiliser Society

THE CARBON FOOTPRINT OF FERTILISER PRODUCTION:
REGIONAL REFERENCE VALUES

by

Antione Hoxha¹ and Bjarne Christensen²

Science of the Total Environment 563-564 (2016) 576-586

Contents lists available at ScienceDirect

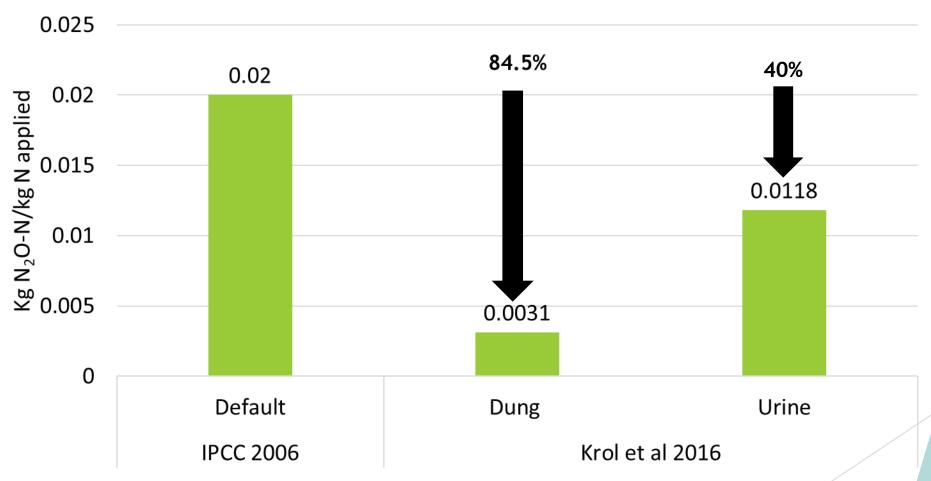
Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations

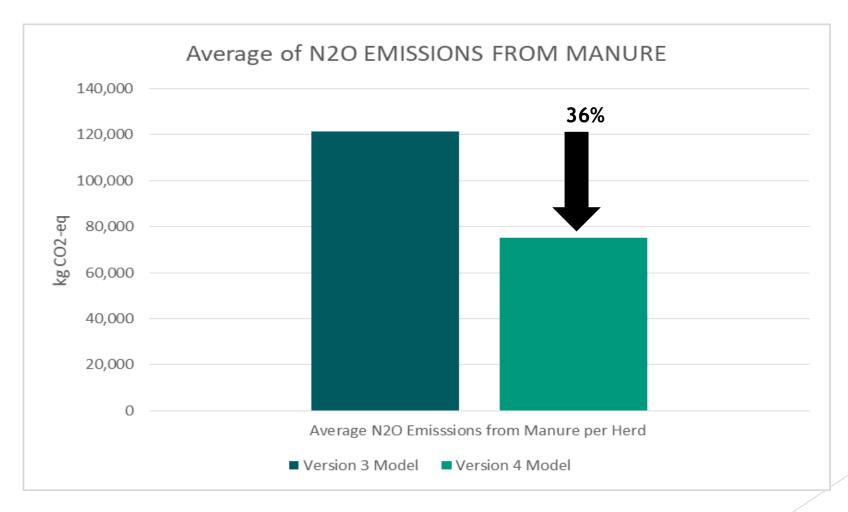
M.A. Harty ^{a,c}, P.J. Forrestal ^a, C.J. Watson ^{b,c}, K.L. McGeough ^b, R. Carolan ^b, C. Elliot ^c, D. Krol ^a, R.J. Laughlin ^b, K.G. Richards ^{a,*}, G.J. Lanigan ^a

Version 3

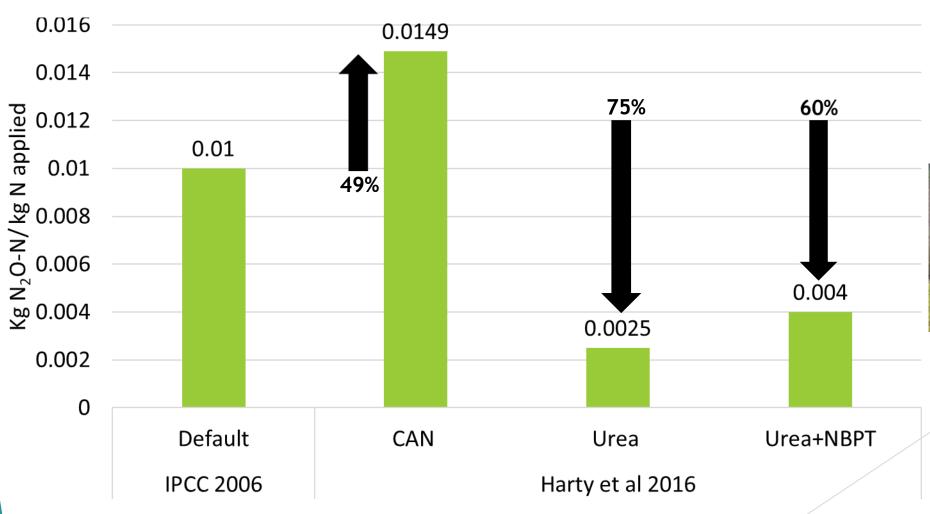

Version 4

Change 1: Nitrous Oxide (Manure) Update

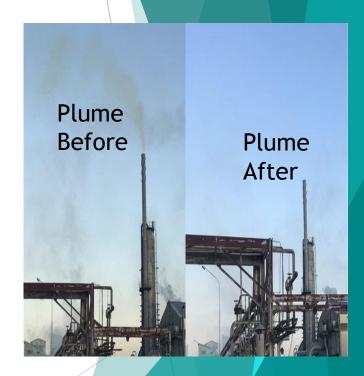
Nitrous oxide from manure from grazing



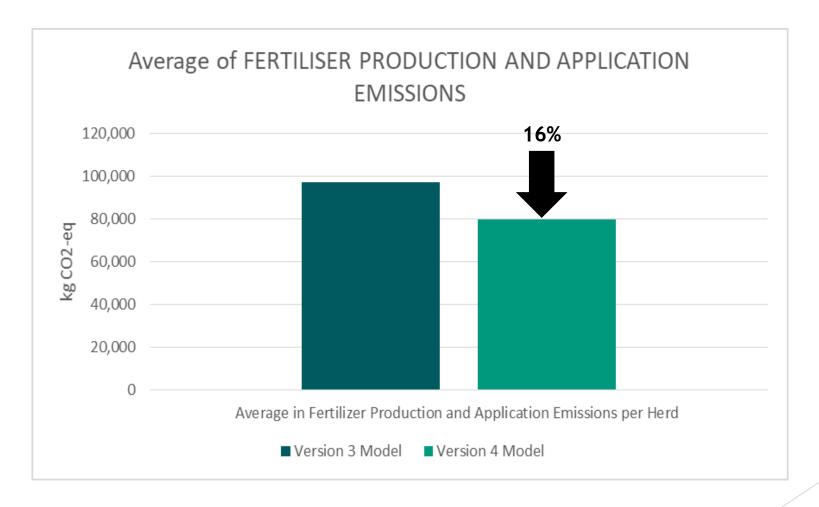
Nitrous Oxide (Manure) Update - IMPACT



Change 2: Nitrous Oxide (Fertiliser Application) Update

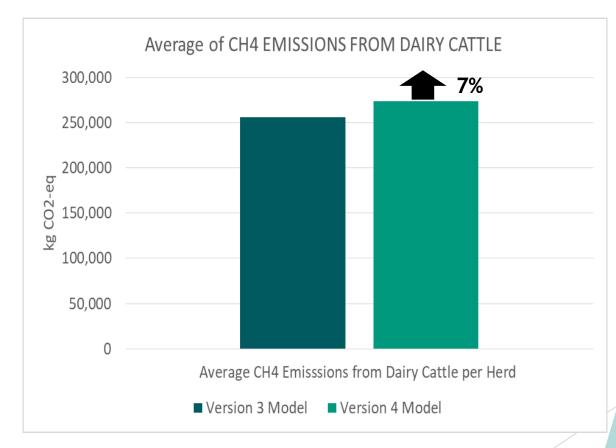


Change 3: Nitrous Oxide (Fertiliser Production) Update


GHG emissions from N fertiliser production

Nitrous oxide abatement Catalyst

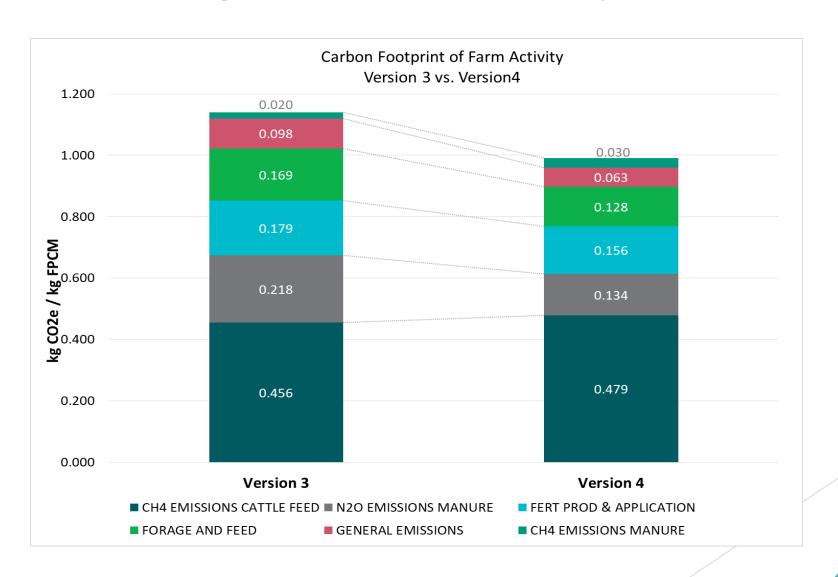
Nitrous Oxide (Fertiliser) - IMPACT

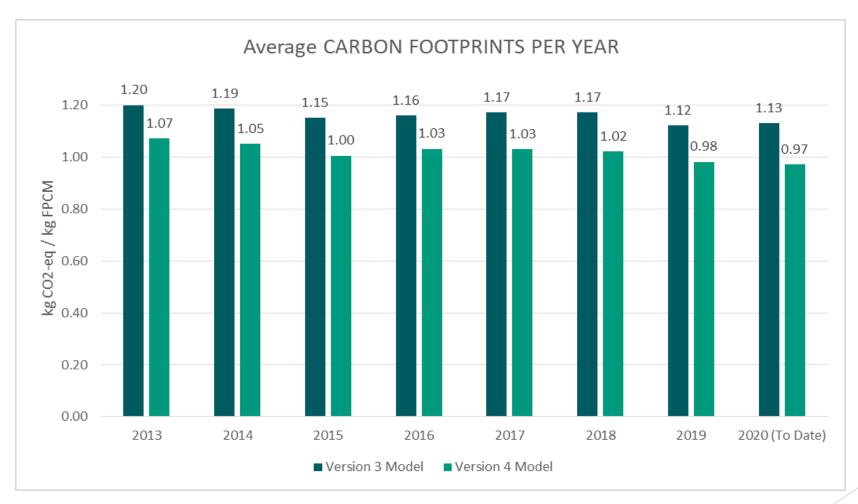


Change 4: Methane From Dairy Cattle

Methane from enteric fermentation

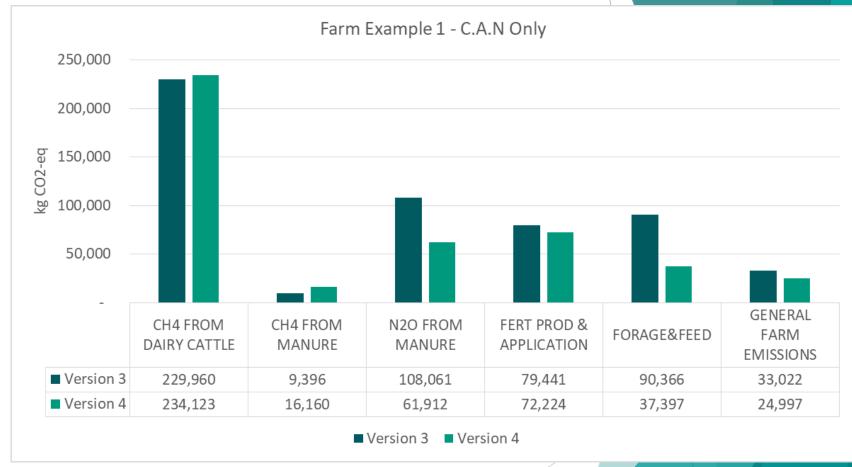
- Gross energy intake lost as CH₄ decreased
 - version 3 = 6.5%
 - Version 4 = 6.3%
- Weight gain now considered
 - 35kg per lactation
- Average live weight of milking cow increased
 - o 535 kg
- Heifer live weight at calving increased 90% of mature weight.





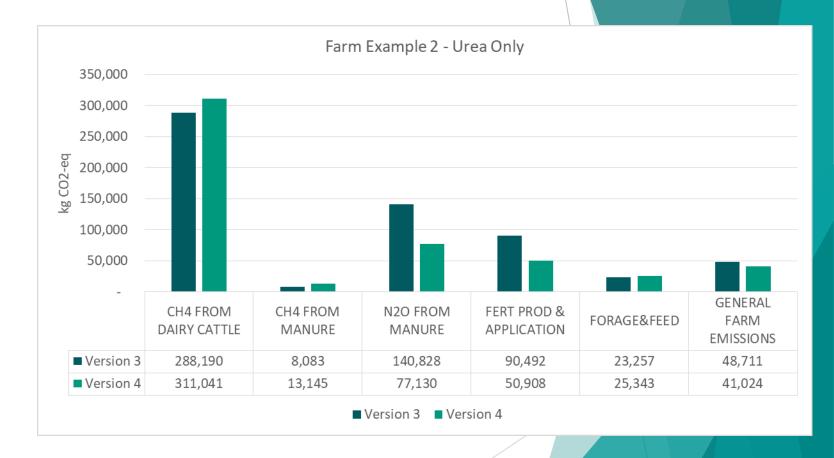
Carbon Footprint Farm Activity Influence -V3 to V4

SDAS Average Carbon Footprint Changes - V3 to V4



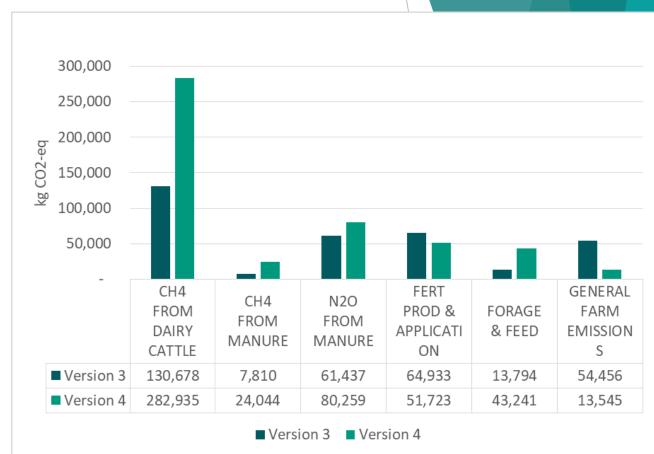
Herd Carbon Footprint Change Example 1 - C.A.N only

- ▶ 72 Dairy Cows
- ▶ 7700 L/Cow
- Recorded C.A.N as the only form of fertiliser.
- ▶ 9% reduction in fertiliser emissions.
- V3 CF 0.99 kg CO2 / kg FPCM
- ► V4 CF = 0.76 CO2 / kg FPCM



Herd Carbon Footprint Change Example 2 - Urea only

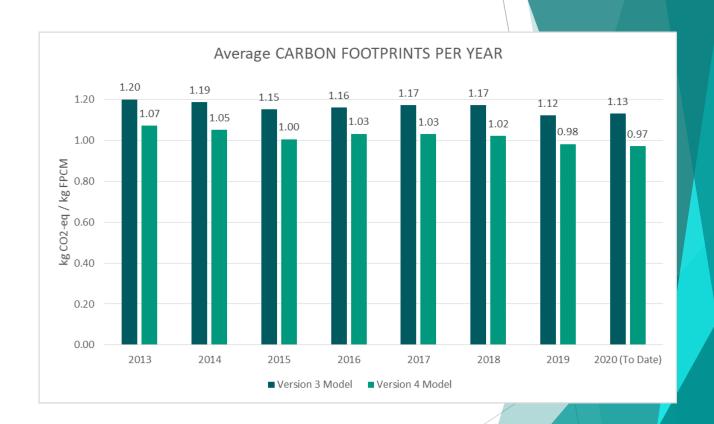
- ▶ 111 Dairy Cows
- ▶ 6200 L/Cow
- Recorded Urea as the only form of fertiliser.
- 44% reduction in fertiliser emissions.
- ▶ V3 CF 0.83 kg CO2 / kg FPCM
- ► V4 CF = 0.68 CO2 / kg FPCM



Herd Carbon Footprint Change Example 3 - Outlier

Metric	Version 3	Version 4
Carbon Footprint	0.79	1.84
AIMS Dairy Cow Count	19	44
AIM Data	Unusual animal movement activity not captured by assumptions in Version 3 Model.	No assumptions required.

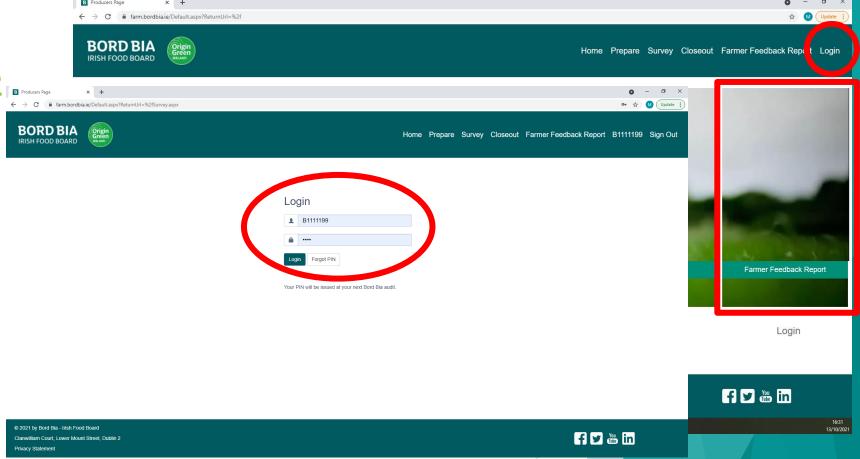
- Increase in all animal related emissions due to more cows counted.
- Influence of high rates of purchases and sales results on final CF.


EBI and Carbon Footprint

Co-Op Key Performance Indicators (KPI's) broken down by Herd EBI								
KPI Metric	No EBI	Bottom 20%	20-40%	40-60%	60-80%	Top 20%	Average	
Average EBI	-	€61	€102	€121	€139	€165	€118	
Number of Herds	1,141	2,936	2,936	2,937	2,937	2,937	15,824	
Average Number of Dairy Cows	59	83	77	86	102	131	93	
% Herds Milk Recording	9%	39%	35%	43%	60%	82%	49%	
% Herds in HerdPlus	10%	34%	39%	50%	70%	90%	53%	
Average Milk Litres per Cow	4,723	5,364	5,146	5,268	5,500	5,648	5,337	
Average Butterfat %	4.04%	4.01%	4.10%	4.16%	4.22%	4.36%	4.16%	
Average Protein %	3.46%	3.43%	3.49%	3.53%	3.57%	3.66%	3.53%	
Average Kgs Milk Solids per Cow	365	410	402	416	441	466	423	
Average SCC	227	206	203	192	174	149	188	
Average Calving Interval (days)	398	407	394	389	382	374	390	
Average Six-Week Calving Rate	62%	56%	61%	65%	70%	79%	66%	
Average of Replacement Rate	13.5%	16.7%	16.4%	17.7%	19.0%	20.5%	17.8%	
Average Parity	3.9	3.7	3.8	3.7	3.6	3.5	3.7	
Kg CO2 / Kg FPCM	1.08	1.04	1.00	0.98	0.95	0.90	0.98	

Retrospective Calculations

- All carbon footprint calculations for all audits to be re run.
- New values will be stored on the Bord Bia Quality Assurance Database.
- Will be used to populate future reporting for individual farms and full cohort of SDAS membership.
- V3 results will be archived for comparison exercises if needed


Farmer Access to Updated Carbon Footprint

https://farm.bordbia.ie

Username = Herd Number PIN = 4 Character Code

Forgot PIN function recently added

Click on Farmer Feedback Report section

Co-Op Access to Updated Carbon Footprints

Co-Op Reports

Pending Applications

Pending Audit

Pending Remote Audit (next 10 days)

Batch Herd Look Up

Cancelled Audits

Carbon Footprint

Carbon Footprint - Average Annual

Completed Audits

Expired / Suspended Producers

Pre-Assessment Audits

BLQAS Postponed for Dairy

Herd History

Certified Producers

Co-Op Summary

Missing Milk Data

Opted in to Grass Fed Records

SDAS Renewal Audits

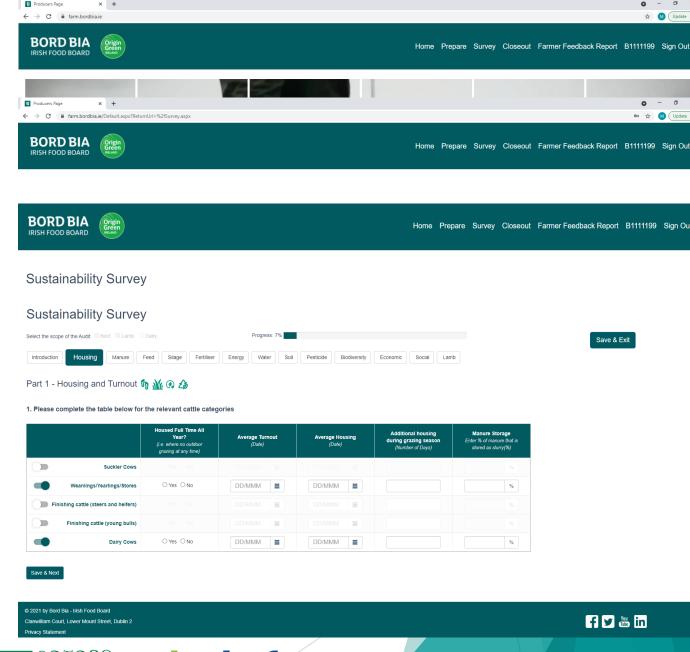
Audits in Review Process

Checklist Score Analysis

Grass Fed Status

Herd 3 Year Figures

- Reports available through Co-Op interface with Bord Bia Database.
- Carbon Footprint =Includes carbon footprint for each audit of each supplier.
- Carbon Footprint Average Annual = Average carbon footprint of suppliers audited in an audit year.
- Certified Producers = Access suppliers Farmer Feedback Report



Sustainability Survey

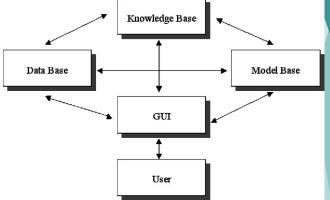
- Survey to be open to all farmers to complete on an annual basis.
- Will enable more up to date reporting of carbon footprint and GHG emissions for SDAS members.
- Allow farmers see impact of adoption of mitigation actions quickly.
- Allow farmers more accurately track carbon footprint and GHG emission trends.

Support for Annual Carbon Footprint Calculation

- Opportunity for Co-Ops to promote annual updating of farm activity data.
- Annual completion of Sustainability Survey in Jan/Feb will enable this.
- Promote to famers participating in Joint Programmes and other Co-Op farm initiatives.
- Highlight to interested suppliers through Co-Op communication channels.
- ▶ If completed, data will not need to be collected as part of SDAS audit.
- Can be completed on Bord Bia farmer portal by farmer or with assistance from Helpdesk.

Future Developments

Data


Develop linkages with other databases:

- Pasture Base
- Feed Merchants
- Fertiliser merchants

Model

- Country specific emission factors
- Carbon sequestration
- Annual review/update
- Development of decision support tool

Support for Links to Merchant Databases

- Potential to pilot use of merchant feed and fertiliser data with consent of the farmer to increase accuracy of inputs further.
- Would support annual carbon footprint calculations.
- Support the development of a long term solution
 - Improving accuracy
 - Removing burden from farmer
- All feed and fertiliser inputs would need to be accounted for.
- Pilot with farms and Co-Ops in a closed loop system.

