Methane Emissions from Suckler Beef

An update from RumenPredict

Paul E Smith^{1,2}, Stephen Conroy³ David A Kenny^{1,2}, Alan K Kelly², Matthew S McCabe and Sinéad M Waters¹

¹Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland ²UCD, School of Agriculture and Food Science, University College Dublin Belfield, Dublin 4, Ireland ³Irish Cattle Breeding Federation, G€N€ IR€LAND Progeny Test Centre, Tully, Kildare Town, County Kildare, Ireland

Challenges for Global Agriculture

Feeding a rapidly increasing global population projected to rise to ca. 9.8 bn by 2050

International pressure to reduce the environmental footprint

THE IRISH TIMES

						_
NEWS	SPORT	BUSINESS	OPINION	LIFE & STYLE	CULTURE	I

Environment) Heritage & Habitat | Renewable Ireland

Ireland 'can't reach' target to cut carbon emissions by 2020

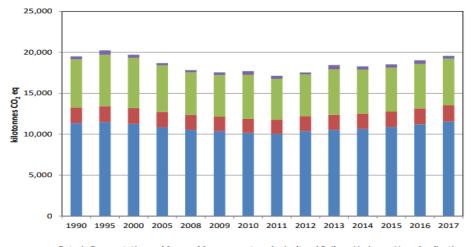
Climate Change Advisory Council chief says recession is only thing that has cut emissions

@ Wed, Jul 25, 2018, 15:46

Thu, Jul 25, 2019

International and National Mitigation Commitments

- COP 21 (UNFCCC Paris Agreement)
 - International commitment aiming to limit global warming to well below 2 C and pursuing efforts to limit it to 1.5 C
- •EU 2020 reduce GHG by 30% based on 1990 levels
 - Ireland to reduce national GHG by 20%
 - Target missed: Irish reduction 4-6%
- EU 2030 reduce GHG by 40% based on 1990 levels
 - Ireland to reduce national GHG by 30%
 - Requirement for a 2% decrease in national GHG/year 2020-2030
- National climate action plan carbon neutrality by 2050



Irish Greenhouse Gas Emissions

- In 2018 agriculture accounted for 34% of national GHGs
- Emission arising from enteric fermentation account for 58.9% of agri emissions
- 19% of Ireland's overall GHG emissions

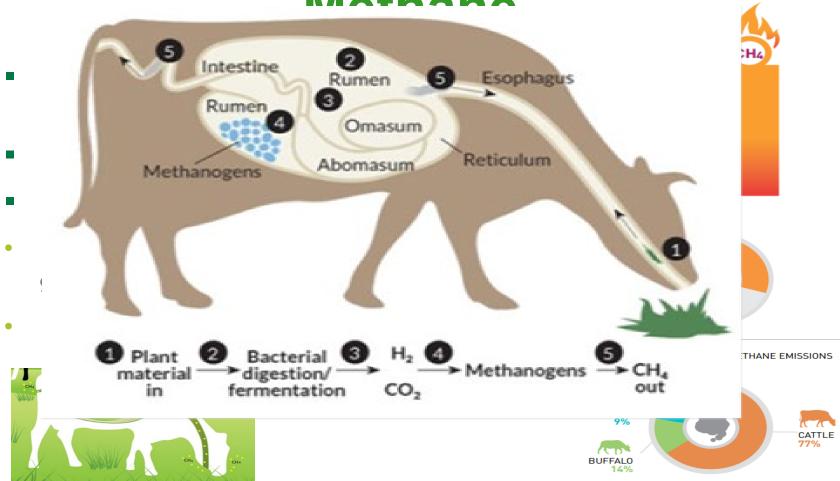

Enteric Fermentation Manure Management Agricultural Soils Liming Urea Application

Figure 5.1 Total Emissions from Agriculture by Sector, 1990-2017

Mathana

Measuring Methane Output

- Methods to measure methane output:
 - Respiration chamber
 - SF₆ tracer method
 - GreenFeed system

- Reporting methane output:
 - Daily methane output (CH₄ g/ day)
 - Methane yield (CH₄ g/ kg of DMI)
 - Methane intensity (CH₄ g/ kg of carcass weight)

Methane Mitigation Strategies for Irish Beef

- Reduce livestock numbers
- Diet
 - Supplementary additives
 - Improvements to pasture quality
- Animal selection
 - Identify and select animals with reduced methanogenic potential
 - Select animals for increased feed efficiency
 - Permanent and accumulative benefits
 - Biology ?

 $_NO_2$ HO

3-nitrooxypropanol

RumenPredict

RumenPredict is a international collaboration which aims to link the rumen microbiome, host genetics and phenotype to benefit mitigation strategies

- FACCE ERA-GAS part of ERA-NET and Horizon 2020
- Budget: €1.5 million
- 36 months
- <u>http://www.eragas.eu/research-projects/rumenpredict</u>

Project Objectives: Enhance the understanding of the role of diet, host genetics, and rumen microbiome on environmental outputs (GHG)

Irish RumenPredict Team

Prof Sinead Waters (PI)

Dr Matt McCabe

Dr Stephen Conroy

Prof David Kenny

Dr Alan Kelly

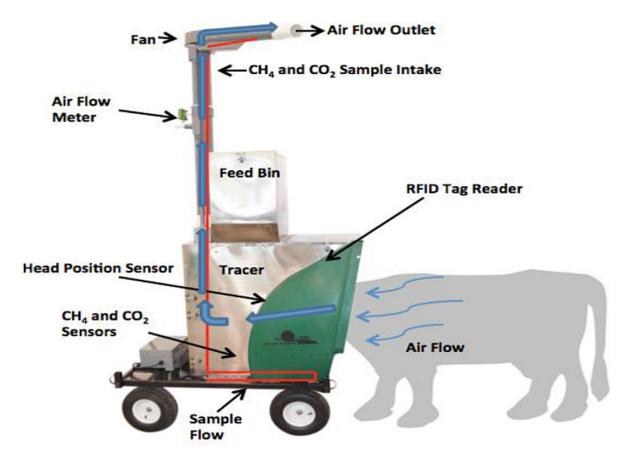
Stuart Kirwan

Paul Smith (PhD student) 9

Enhanced understanding of the role of diet, host genetics, and rumen microbiome on environmental outputs (GHG)

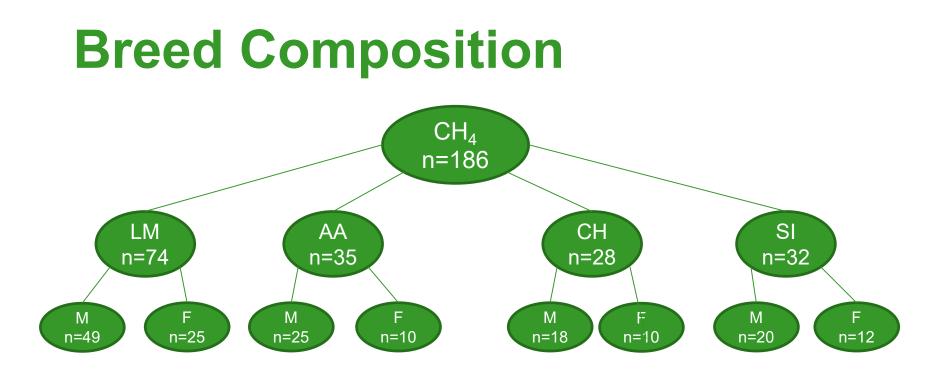
3 tier approach required to enhance our understanding

- 1. Identify cattle divergent in their level of feed efficiency and environmental output
 - FCR, RFI, methane
- 2. Identify key rumen microbes associated with different phenotypes
 - Amplicon and shotgun sequencing
- 3. Perform a GWAS to identify DNA based biomarkers that link the rumen microbiome and efficiency phenotypes


Identify cattle divergent in their level of feed efficiency and environmental output

- ICBF Progeny Test Centre in Tully Co. Kildare
 - Performance test >500 beef cattle per year
 - Various breeds and sires
 - Measure feed intake, FCR, ADG, meat quality, fat scoring
- Cattle undergo 120 day finishing period
 - 30 day acclimatisation period
 - 90 day feed efficiency period
- Estimate enteric methane production
 - 4 week training period
 - 3 week methane estimation period
 - Rumen fluid, saliva, blood, faecal and urine samples collected

GreenFeed Protocol



Preliminary Results to Date

Average Emissions

Preliminary results

	Mean (n=186)	Std Dev	CV %
Age (months)	16.6	1.4	8.2%
Weight (kg)	521.1	85.5	16.4%
Feed Intake (kg of DMI)	10.7	1.8	16.9%
Daily Methane (g/day)	233.8	50.9	21.8%
Daily Carbon Dioxide (g/day)	8796.2	1114.7	12.7%
Methane Yield (g/kg DMI)	22.2	4.6	20.7%
Carbon Dioxide Yield (g/kg DMI)	837.7	109.3	13.1%
*Methane Intensity (g/kg BW)	0.4	0.1	21.1%
*Carbon Intensity (g/kg BW)	16.8	1.9	11.1%

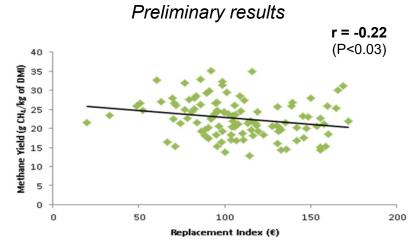
Key natural variation in GHG exists

* Proxy for methane and carbon dioxide intensity

Average Emissions (Type)

Preliminary results

	Heifers (n=56)	Steers (n=130)	Difference %
Age (months)	15.8	17.0	7.2%
Weight (kg)	504.8	528.2	4.4%
Feed Intake (kg of DMI)	10.1	10.9	7.1%
Daily Methane (g/day)	220.4	239.6	8.0%
Daily Carbon Dioxide (g/day)	8159.0	9070.7	10.1%
Methane Yield (g/kg DMI)	22.1	22.3	0.7%
Carbon Dioxide Yield (g/kg DMI)	818.4	845.9	3.3%
*Methane Intensity (g/kg BW)	0.4	0.4	2.7%
*Carbon Intensity (g/kg BW)	16.2	17.0	4.7%



* Proxy for methane and carbon dioxide intensity

Will Reductions to Methane Production Enhance Profitability?

Methane Yield and €uro Star Replacement *Preliminary results*

Microbiome Applications master for Sustainable food

evetome through

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement

Acknowledgements

- Teagasc
 - Prof Sinéad Waters (PI)
 - Prof David Kenny
 - Dr Matt McCabe
 - Stuart Kirwan
- UCD
 - Dr Alan Kelly
- ICBF

21

- Dr Stephen Conroy
- Dr Andrew Cromie
- Caitriona Scanlan
- Brendan O'Shea
- Jamie Farry
- PJ Hegarty

Tully now climate-testing all beef progeny

Thomas Hubert visits the extension to the ICBF's Tully test centre, where all cattle now go through a research project aiming to breed animals with lower greenhouse gas emissions.

ne New Grants Baltation + Heldfins + Senates + Heldation + HontiCEF +

'RumenPredict' and Measuring Methane in Tully

Thank You

