Big Data in Animal Agriculture

December 5th, 2018 – ICBF ICBF & Sheep Ireland Genetics Conference – Athlone, Ireland

Roel Veerkamp, Wageningen Livestock Research

Big Data

1.79 billion 317 million monthly active users

loovear

What is Big data?

Big Data in Animal Agriculture?

Key pointers to make Big Data useful

Example projects

What is big data field?

Volume

Velocity

Variety

Veracity

Variability

Value

Capability to acquire, and interpret data **real-time**

Forms of data (text, tweets, video, drone images)

➢ Reliability and quality of data

Data whose meaning is constantly changing

Expectations are huge if analysis of Big Data delivers insights and information

• What is Big data?

Big Data in Animal Agriculture?

Key pointers to make Big Data useful

Example projects

Sources of Big Data - Machines

- Tractors
- Tillage equipment
- Milking robot / parlour
- Feed boxes

Sources of Big Data - Fields

- Soil analysis
- Soil type
- Soil temperature
- Ground water level
- Crop history

. . . .

Sources of Big Data - Animals

- Genomic data
- Sensors / images
 - ID
 - Behaviour
 - Health
 - Position
 - Smart fencing

ACTGAGTTCCCTGGAACGGGACGGAC TACTGAGTTCCCTGGAACGGGACGGAC CCGTCTGGTAGGACACCCAGCCC TTCCGAGTTCCCTGGAACGGGACGGA CTTCCGAGTTCCCTGGAACGGGACGGA GGATAACCGTGGTAATTCTAG ACGCCATAGAGGGTGAGAGCCCC TTCCGAGTTCCCTGGAACGGGACGGACGGACGGC CGGGACGCCATAGAGGGTGAGAGCCCC CGGGACGCCATAGAGGGTGAGACGGACGGACGGC

Sources of Big Data - Environment

- Gaseous emissions
 - Methane (CH₄)
 - Ammonium (NH₃)
 - Nitrous oxide (N₂O)
- Ground/surface water
- Weather

Sources of Big Data – production chain

- Slaughter data
- Tracking & tracing
- Farm management program
- Financial accounts

• What is Big data?

Big Data in Animal Agriculture?

Key pointers to make Big Data useful

Example projects

Key pointers to make Big Data useful (1)

 Making data available for the benefit of ... farmer consultant legislation technology provider

. . . .

Agreements with data suppliers about data availability

2. Sharing data through SDF Datahub

- . Stimulate use of sensor data and statistical data through data exchange
- · Farmer authorizes third parties for data use
- Datahub managed by SDF Foundation
- Open to third parties use Q4 2017

3. More efficiency and sustainability through applications

7

- · Applications to increase efficiency on dairy farms
- . E.g. by increasing nutrition efficiency and reducing environmental impact

van het Land, ICAR, 2017

Key pointers to make Big Data useful (2)

Key pointers to make Big Data useful (3)

Other ways of working e.g. hackatons

Multidisciplinary teams Combining data, software, hardware and design Competition 24 - 36 hours Pressure cooker setting

Big data analytics & male fertility, November 2017, Dairy Campus

DUURZAAM VARKENSVLEES

Hackathon smart farming, December 2017, Westfort, Nieuwegein

• What is Big data?

Big Data in Animal Agriculture?

Key pointers to make Big Data useful

Example projects

Big Data & Wageningen Livestock Research

Predict which anial is going to have best herdlife

Dairy cow's longevity

- DNA: breeding value for 50 traits
- 72 additional phenotypic records; Pedigree, dam, own birth and calving records, test milk days, movement (transport), inseminations, viability & vitality of calves, survival status at various points, farm...
- Statistical methods: Machine learning

Better management predicting longevity

Combination of genomic breeding values and phenotypic traits important to predict survival, even after first calving

Big Data & Wageningen Livestock Research

Resilience and efficiency of animal and farms

Resilience

Resilience through the theory of critical transitions

100 years

Scheffer et al., 2012

New breeding trait resilience using existing data

Big Data & Wageningen Livestock Research

Environmental impact

Manure management

Erwin Mollenhorst, Claudia Kamphuis, Gerard Migchels

Environmental norms

Current situation:

- Fixed phosphate application norms for crops / grassland
- 3 classes, based on P status of field
- For crops: 50 / 60 / 75 kg P_2O_5 (app. 22 / 26 / 33 kg P)

Can we predict future maize yields (= P) based on farm data and open source weather data?

Ideas developed at Hackatons

MestHack October 2017, Dairy Campus

(**Be)MestWijs** won the incentive prize for most market-ready result Job de Pater (NMI), Reinier Wieringa (EZ-Dictu), Erwin Mollenhorst (WUR), Justin Steenhuis (VAA ICT), Herbert Meuleman (CRV), Claudia Kamphuis and Gerard Migchels (both WUR). Not on foto: Roel Veerman (Akkerweb)

MaxiMy-N won with a data- en ITimplementation to measure and show ecosystem services Mehrab Marri (MSc), Joost Lahr, Henk Janssen, Yke van Randen, Erwin Mollenhorst (all 4 WUR) and Lucas vd Zee (UvA). In front: Gerard Ros (NMI) and Charon Zondervan (jury)

BodemHack, May 2018, De Marke

Norm vs model

Norm (50 kg $P_2O_5 = 22$ kg P) Predicted (validation sets) 4 4 2010
2011
2012
2013
2014 2010
2011
2012
2013
2014 30 30 yobs 20 yobs 20 RMSE =4.86 9 9 RMSE =4.54 r =0.4 0 0 Ó 10 20 30 40 10 20 30 40 Ó ypred ypred WAGENINGEN RESEARCH 8 100 years

Most important variables

Crop in previous year (grass/maize) Phosphate status field

Maximum temperature in July

Average Pyield maize same field past 7 yrs

Summary

- More and more big data will come available
- Key pointers to success
 - Sharing data (who organises and benefits?)
 - Domain knowledge should not be forgotten
 - Domain experts should adapt
- Technology is not the silver bullet!

Thanks for your attention

Success in Big Data is not about technical tools, but connecting the tools with people and domain expertise

Roel.Veerkamp@wur.nl

