

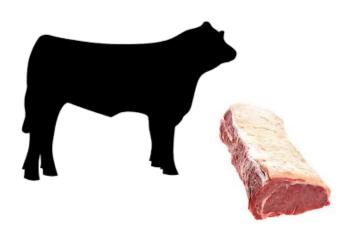
Meat yield genetic evaluations

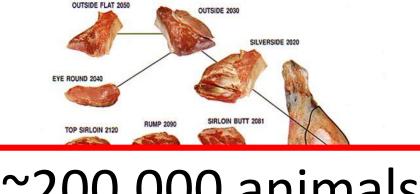
Meat Technology Ireland

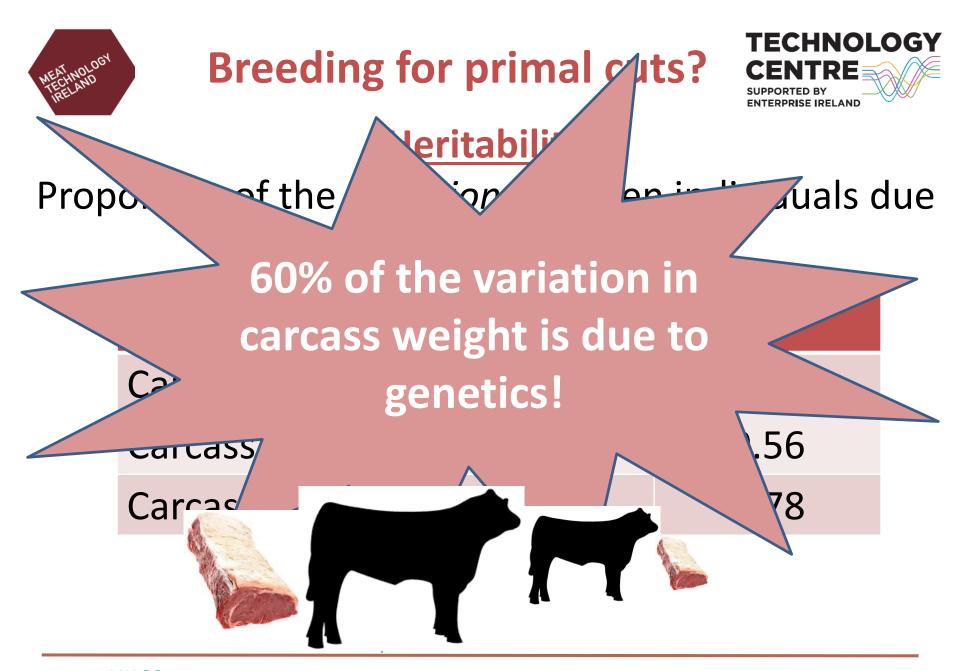
- 5 year research & innovation programme
 - Developed by industry and co-funded by Enterprise Ireland and beef and sheep meat processing companies
 - 6 strategic research pillars
 - Genomic predictions
 - Meat tenderness
 - Meat safety
 - Meat characterisation technologies
 - Meat and health
 - Market opportunities

Background

- Payment systems in factories based on estimates of carcass value
 - Many national genetic evaluations for carcass merit are based on such metrics (Pabiou et al., 2012)
 - Conroy et al. (2010) reported a correlation of 0.85 between this classification system and carcass meat proportion
- Due to the large resource demand to generate detailed cut data, few have embarked on this research

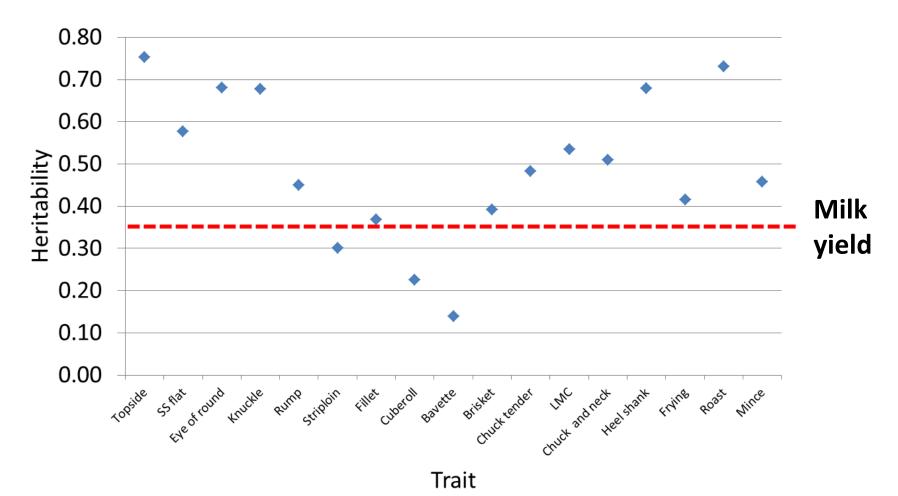



Breeding for primal cuts?



BEEF PRIMAL CUTS

~200,000 animals



Heritability of retail cuts

Breeding for primal cuts?

- Heritability of primal cuts
- Variation present in the dataset

Can we predict primal cut weight using genetics?

- Using primal cuts of ~200,000 animals
 - Stratify young animals into groups based on their genetic merit for the weight of primal cuts
 - Compare the predicted performance of animals with their actual data at slaughter

Predicted performance verus actual performance

Stratum	Rump			
Very light	12.79			
Light	13.36	10%		
Heavy	13.79			
Very heavy	14.07			

Predicted performance verus actual performance

Stratum	Rump	Striploin		
Very light	12.79	13.28		
Light	13.36 1	13.89 12%		
Heavy	13.79	14.53		
Very heavy	14.07	14.87		

Predicted performance verus actual performance

Stratum	Rump		Striploir)	Fillet	
Very light	12.79		13.28		6.12	
Light	13.36	10%	13.89	12%	6.32	7%
Heavy	13.79	1	14.53		6.46	
Very heavy	14.07		14.87		6.56	

To conclude...

- Genetic variability in the weight of primal cuts exists
- Ability to increase primal cut weight without altering carcass weight
- Parental average measures of genetic merit can stratify carcasses on primal cut yields

Thank You