

#### **IRISH CATTLE BREEDING FEDERATION**

#### Improving Carcass and Meat Eating Quality through Genetics; Some experiences from Ireland.

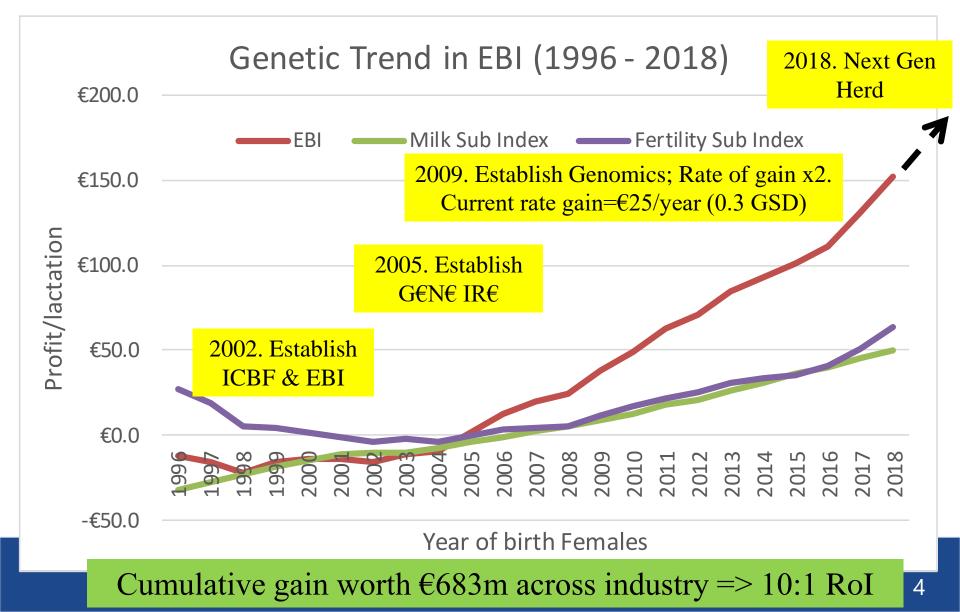


Dr Andrew Cromie, Technical Director, ICBF



# Overview of Talk.

- Genetic works!
- Beef cattle breeding challenges and opportunities.
- Irish approach to beef cattle breeding.
- · Carcass trait evaluations + future plans.
- · Meat eating quality + future plans.
- · Collaboration in data sharing.
- Discussion.




## Genetics Works - Humans.



- Confirmation of parentage
- Me and my then 3 month old son Tim
  - Both enjoy a snooze after a long day.
  - Note the similar arch in necks.
- $\cdot$  It's in our DNA!

## Genetics Works - Dairy Cattle.



# Validation; Teagasc Next Gen Herd.

| Trait                 | Elite Herd | National Ave |
|-----------------------|------------|--------------|
| EBI (€)               | 154        | 51           |
| Replacement rate (%)  | 17%        | 27%          |
| Fat + Protein (kgs).  | 475        | 445          |
| Milk returns (€)      | 220,594    | 204,301      |
| Replacement Costs (€) | 29,079     | 46,072       |
| Net profit (€)        | 92,305     | 68,023       |

- Teagasc Dairy Farm Systems Model.
  - 110 cows, 40 hectares, grass based & base milk price of €29.5 cpl.
- EBI predicted €206 additional profit/lactation. Actual outcome was €220 ! (i.e., €92k – €68k per 110 cows)

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

# What about beef cattle?



 A lot more challenges with genetic gain in beef cattle systems?



# Beef Cattle; Challenges.

- · Multi-breeds, including cross-breeds.
- Genetic improvement generally "within breed". Past focus on terminal traits.
- Low AI usage (linkages + impact on genetic gain).
- · Generally small breeding herd size.
- Poor data recording, especially for carcass & maternal traits under commercial conditions.
- Separating direct and maternal effects.
- Lower profits => not the same commercial investment.



# Beef Breeding; Opportunities.

- New ways to collect data=> image data (beef carcass) & sensor data (e.g., fertility, health/disease, intake, vigor etc).....
- New technologies => genomics.
- · Collaboration in data sharing.
  - At a national level Ireland, US=>BIF (tomorrow morning sessions), MLA (Australia....
  - At an international level ICAR, Interbeef, Breedplan, IGS, AAA, alliances/consortia.



# Irish Beef Cattle Herd.



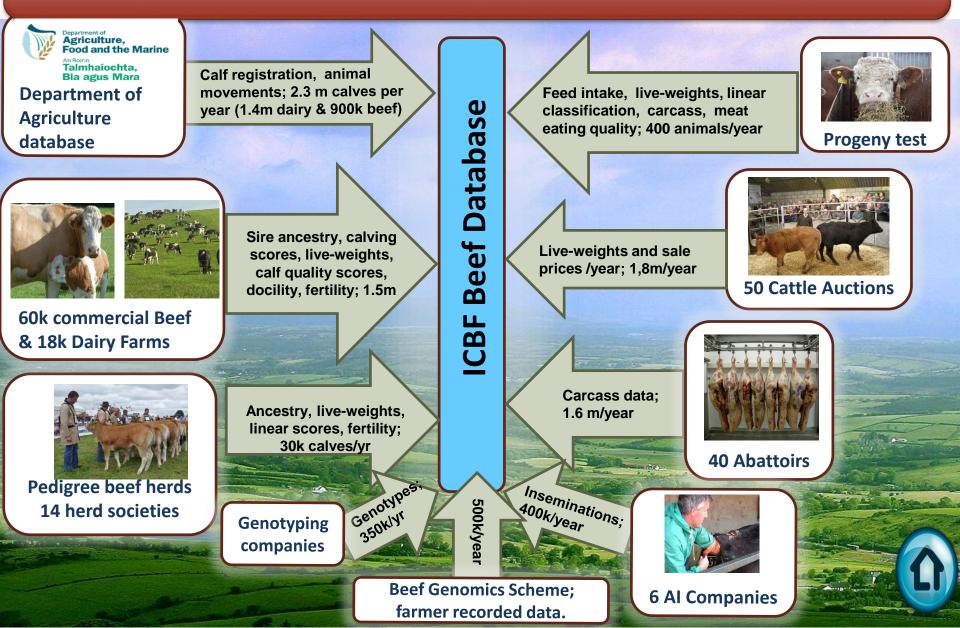
1m beef & 1.5m dairy cows.

- 50k beef farmers @ 20 cows.

500k tonnes beef/year.

- 55% suckler beef & 45% dairy beef.
- Steers & heifers.
- 80% exported.
- Seasonal system (370kg @ 28 mths). Grass-fed!
- Cross-bred beef cow herd. Main breeds LM=> AA=> CH=> HE=> SI.
  - Major growth in AA in last 5 yrs
- 25% beef calves are AI bred.




# Irish Cattle Breeding.

- $\cdot$  Co-ordinated by ICBF.
  - Established in 2000 as a co-op of 30 cattle breeding orgs.
  - Operating budget of ~€7m/year. 50% "industry good" (govt & tag) & 50% "service income" (industry & herdplus)
  - Staff of 70 servicing 100k dairy & beef farmers.
- Focused on genetic gain; data, evaluations & breeding programs (profit from science).
- Independent genetic evals => Trust.
- World-leading (research => implementation)
  - ~1.2m beef animals genotyped & growing @300k/year.
- $\cdot$  ICBF database now corner-stone of industry.



wcgalp.com

Beef performance evaluations in a multi-layered and mainly crossbred population *R.D. Evans*\*, J.F. Kearney\*, J.McCarthy\*, A. Cromie\* and T. Pabiou\* \*Irish Cattle Breeding Federation, Highfield House, Bandon, Cork, Ireland



# The Breeding Goal in Beef.

- $\cdot$  The ideal suckler cow must;
  - Calve each year.
  - Calve herself.
  - Have enough milk to rear her calve.
  - Be not too big (from a cost of feed perspective).
  - Have a good calf at foot (in terms of weight and quality), for sale or taking through to slaughter.
- She needs to produce more output from less input => a balanced cow.



# A balanced cow!




#### An Irish 5-Star cow.



One of David's best cows. This nine-year-old SI X cow has a Replacement Index of €169 (5 star, top 1%). She calved for the first time at 24 months, has had eight calves with an average calving interval of 364 days and she weaned the heaviest calf of David's 2015 calf crop. She is sired by the old Simmental AI bull Hurtig (HRG).

#### Producing these sorts of progeny.

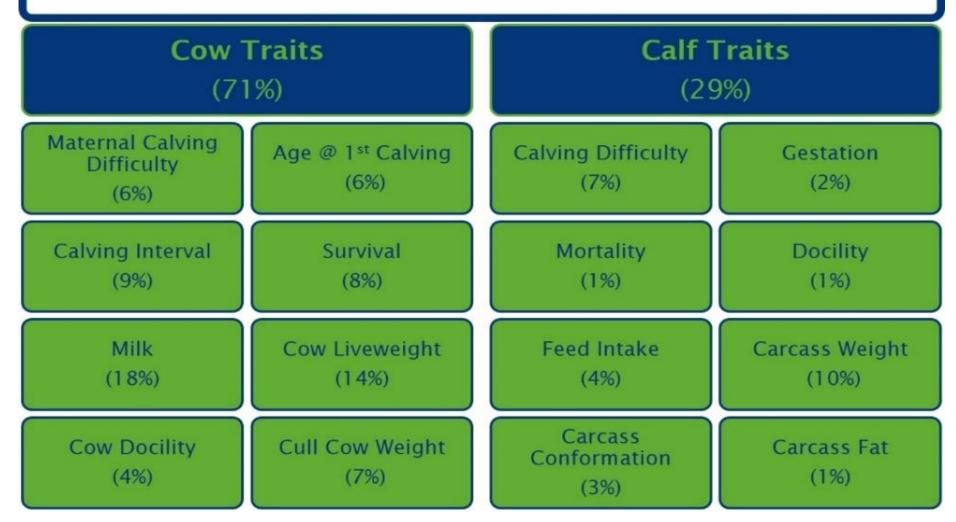




# Approach to Genetic Gain.

- Profit from science approach (with Teagasc).
- Evaluations have evolved with available data;
  - 2002 Within breed pedigree only.
  - 2005 Multibreed & cross-bred (calving & carcass)
  - 2008 Profit indexes (overall)
  - 2012 Profit indexes (rep and terminal).
  - 2015 Integrating genomics.
- · Genomic evaluations for 40m+ animals.
- · Incentive programs focused on data quality.




# €uro-Star Indexes.

| €uro-star Index Re                     | placement Graphics | Terminal Graphics     | Linear Type | Pedigree | Prev Eval   | Geno Eval                       |         |
|----------------------------------------|--------------------|-----------------------|-------------|----------|-------------|---------------------------------|---------|
| Star Rating<br>(within Limousin breed) | Economic Index     | :es                   | €uro valu   | e Index  | reliability | Star Rating<br>(across all beef | breeds) |
| *****                                  | Replacement (pe    | r daughter lactation) | €80         | 47%      | (Average)   | ****                            | k.      |
| ****                                   | Terminal           |                       | €152        | 49%      | (Average)   | ****                            | r in    |

- · Profit Index, e.g.,  $\in 80$  more per calving.
  - Multi-breed evaluations.
- Star system; 5 star versus 1 star.
  - Across all breeds. Also within breed.
- Very high level of farmer understanding => Beef Data Genomics Program.



#### **Replacement Index**



\* Goal traits, predicted from a total of ~30 goal and index traits.





\* Goal traits, predicted from a total of ~30 goal and index traits.



## Records in Genetic Evaluations.

| Trait                   | old        | new        | Extra   | % Extra |
|-------------------------|------------|------------|---------|---------|
| calving difficulty      | 13,417,747 | 14,151,764 | 734,017 | 5.2%    |
| gestation               | 4,262,712  | 4,636,262  | 373,550 | 8.1%    |
| mortality               | 18,372,695 | 19,275,401 | 902,706 | 4.7%    |
| birth weight            | 244,722    | 253,588    | 8,866   | 3.5%    |
| weaning weight          | 1,147,401  | 1,164,267  | 16,866  | 1.4%    |
| yearling weight         | 1,255,434  | 1,291,924  | 36,490  | 2.8%    |
| Linear scores           | 241,114    | 241,637    | 523     | 0.2%    |
| weanling docility       | 1,658,493  | 1,704,922  | 46,429  | 2.7%    |
| weanling price          | 1,117,318  | 1,144,126  | 26,808  | 2.3%    |
| yearling price          | 1,081,150  | 1,108,389  | 27,239  | 2.5%    |
| Tully feed intake       | 5,774      | 5,926      | 152     | 2.6%    |
| carcass weight          | 7,311,277  | 7,539,510  | 228,233 | 3.0%    |
| carcass conformation    | 7,311,277  | 7,539,510  | 228,233 | 3.0%    |
| carcass fat             | 7,311,277  | 7,539,510  | 228,233 | 3.0%    |
| age 1st calving         | 2,394,807  | 2,452,297  | 57,490  | 2.3%    |
| calving interval        | 4,647,900  | 4,828,595  | 180,695 | 3.7%    |
| maternal wean wt        | 984,932    | 996,339    | 11,407  | 1.1%    |
| cow milk score          | 2,572,720  | 2,638,801  | 66,081  | 2.5%    |
| survival                | 5,477,848  | 5,742,922  | 265,074 | 4.6%    |
| cow docility            | 2,350,435  | 2,587,252  | 236,817 | 9.2%    |
| cow live weight         | 1,011,949  | 1,148,679  | 136,730 | 11.9%   |
| cull cow carcass wt     | 1,795,311  | 1,856,836  | 61,525  | 3.3%    |
| Genotypes               | 1,163,750  | 1,201,351  | 37,601  | 3.1%    |
| foreign ebvs calving    | 28,285     | 28,814     | 529     | 1.8%    |
| foreign ebvs weaning wt | 50,393     | 51,746     | 1,353   | 2.6%    |
| foreign ebvs linear     | 43,461     | 43,780     | 319     | 0.7%    |
| foreign ebvs carcass    | 30,127     | 31,110     | 983     | 3.2%    |
| foreign ebvs milk       | 51,203     | 52,144     | 941     | 1.8%    |

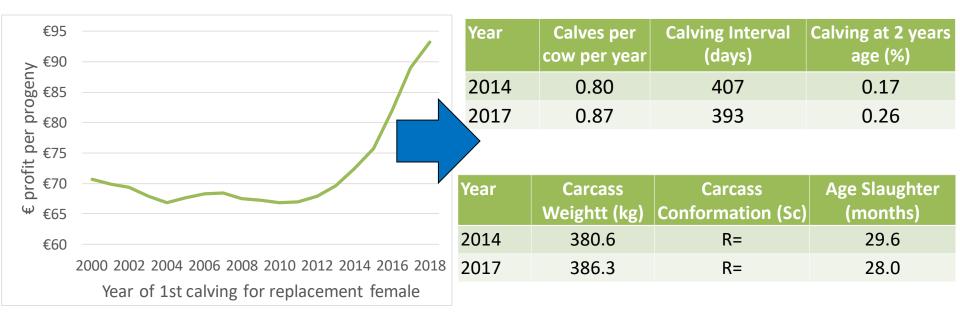
• Key data;

- Calving 14.1m
- Live-weight 1.3m
- Carcass 7.6m
- Cost of feed 6k.
- Female fert 5.0m
- Cow milk 2.6m
- Genotypes 1.2m
- Foreign EBV's -50k
- 90% of data is from commercial cattle.



#### **ICBF Spring Active Beef Bull List 2018**

|          |              | <b>Bull Details</b>                                 |       |                | Re    | epla  | icem                            | ent               | Ca                | alvi     | ng           | Milk                   |          | S     | Seme    | n        |
|----------|--------------|-----------------------------------------------------|-------|----------------|-------|-------|---------------------------------|-------------------|-------------------|----------|--------------|------------------------|----------|-------|---------|----------|
| Rank     | Code         | Bull Name                                           | Breed | Gene<br>reland | Index | Rel % | Stars<br>Within                 | Stars<br>Across   | Calv<br>Diff %    | Rel<br>% | Calv<br>Recs | Daughter<br>Milk (kgs) | Rel<br>% | Price | Supp    | lier     |
| 1        | SA4059       | Beguin                                              | SA    | No             | €252  | 59    | 5                               | 5                 | 1.6               | 83       | 121          | 15.8                   | 72       | €26   | Munste  | r,PG     |
| 2        | SA2189       | Ulsan                                               | SA    | No             | €203  | 63    | 5                               | 5                 | 1                 | 96       | 780          | 11.7                   | 73       | €10   | Dovea   |          |
| 3        | SI4383       | Derreen Declan                                      | SI    | No             | €192  | 54    | 5                               | 5                 | 3.2               | 74       | 69           | 12                     | 49       | €12   | Dunmas  | SC       |
| 4        | ZAG          | Castleview Gazelle                                  | LM    | Yes            | €191  | 77    | 5                               | 5                 | 4.4               | 99       | 27072        | 0.9                    | 76       | €10   | Munste  | r,PG     |
| 5        | SFL          | Du Stordeur Flaneur                                 | BB    | No             | €183  | 96    | 5                               | 5                 | 5.1               | 99       | 10244        | 4.4                    | 99       | €15   | Bova    |          |
|          | VTA          | Vaillant                                            | SA    | No             | €179  | 77    | 5                               | 5                 | 2.1               | 93       | 300          | 6.2                    | 85       |       | Bova    |          |
| 7        | ISL          | Islavale Cracker 11                                 | SI    | No             | €171  | 76    | 5                               | 5                 | 7.2               | 97       | 1148         | 8.6                    | 86       | €10   | Dovea   |          |
| 8        | SI2469       | Lisnacrann Fifty Cent                               | SI    | Yes            | €170  | 57    | • D                             | 2000              |                   | ro       |              | n Ton                  | Dul      | 1     |         | PG       |
| 9        | SA2153       | Highfield Odran                                     | SA    | Yes            | €166  | 54    |                                 |                   |                   |          |              | n Top                  |          |       |         | PG       |
| 10       | QCD          | Cloondroon Calling                                  | SI    | Yes            | €161  | 82    | L                               | isting            | g =>              | Fo       | cused        | d on pr                | om       | notii | ng      |          |
| 11       | SA4060       | Baron                                               | SA    | No             | €161  | 50    | t                               | hese              | bull              | s w      | ithin        | the rel                | eva      | ant   |         | PG       |
| 12       | JSS          | Usse                                                | LM    | No             | €160  | 52    | these bulls within the relevant |                   |                   |          |              |                        |          |       |         |          |
| 13       | SI2152       | Curaheen Earp                                       | SI    | Yes            | €159  | 59    |                                 |                   |                   |          |              |                        |          |       |         | PG       |
| 14       | VMO          | Voimo                                               | СН    | No             | €159  | 64    | • 5                             | <mark>0% o</mark> | f top             | ) bi     | ulls a       | re impo                | ort      | ed    | =>      | PG       |
| 15       | CH2218       | Bivouac                                             | СН    | No             | €155  | 59    | M                               | /hv ir            | ntern             | ati      | onal         | <mark>collabo</mark>   | rat      | tion  | is      |          |
| 16       | XCD          | Clonagh Direct Debit                                | SI    | No             | €155  | 60    |                                 |                   |                   |          |              |                        | 1 4      |       |         | ;        |
| 17       | GEU          | Gordon Et Du Golard                                 | BB    | No             | €155  | 77    | 11                              | -                 |                   |          | Irela        |                        | -        |       |         | PG       |
| 18       | SI4030       | Auchorachan Wizard                                  | SI    | No             | €153  | 54    |                                 | • C               | H da              | ata      | now          | shared                 | fro      | om    | UK      | <u>.</u> |
| 19       | TSO          | Curaheen Tyson (Et)                                 | SI    | No             | €150  | 89    |                                 | В                 | <mark>reed</mark> | pla      | n =>         | New to                 | n        | CH    | bull    | es       |
| 20       | LZR          | Lataster Eric                                       | SA    | No             | €150  | 92    |                                 |                   |                   | -        |              |                        |          |       |         | PG       |
| 21       | SI2099       | Kilbride Farm Escalop 13                            | SI    | No             | €149  | 51    |                                 | ()                | Auon              | 115)     |              | 1ay 201                | 0        | iisti | ng.     |          |
| 22       | ZLL          | Lanigan Red Deep Canyon Et                          | AA    | No             | €146  | 78    | 5                               | 5                 | 2                 | 98       | 2415         | 9.7                    | 84       | €30   | Bova    |          |
| 23       | КҮА          | Cornamuckla Lord Hardy K222                         | AA    | No             | €145  | 95    | 5                               | 5                 | 0.8               | 99       | 39775        | 3.6                    | 98       | €10   | Munste  | r,PG     |
| 24       | ZEP          | Hawkley Red Zeppelin N659                           | AA    | No             | €143  | 50    | 5                               | 5                 | 2.1               | 91       | 380          | 5.3                    | 38       | €10   | Dovea   |          |
| 25       | PZB          | Bonaparte                                           | SA    | No             | €142  | 81    | 3                               | 5                 | 3                 | 97       | 1284         | 1.1                    | 90       | €10   | Munste  | r,PG     |
| 26       | DZJ          | Drumlegagh Dennis                                   | SA    | No             | €141  | 64    | 3                               | 5                 | 3.2               | 87       | 244          | 6.3                    | 68       | €12   | Euroger |          |
| 27       | АНС          | Auroch Deuter Pp                                    | SI    | Yes            | €140  | 61    | 5                               | 5                 | 5.4               | 96       | 827          | 9.5                    | 44       | €10   | Munste  |          |
| 28       | YFK          | Kilbride Farm Delboy 12                             | SI    | No             | €138  | 64    | 5                               | 5                 | 10.6              | 96       | 805          | 9.7                    | 58       |       | Euroger |          |
| 29       | окн          | Keltic Handsome                                     | LM    | Yes            | €138  | 66    | 5                               | 5                 | 6.1               | 99       | 4322         | 1.5                    | 54       | €12   | Munste  |          |
|          |              |                                                     | SI    | Yes            | €137  | 50    | 4                               | 5                 | 4.1               | 65       | 36           | 12.2                   | 50       |       | Munste  |          |
| rish Cat | ttle Breedin | Clonagh Frosty King Et<br>g Federation Soc Ltd 2013 |       |                |       |       | .com                            | -                 |                   |          |              |                        |          |       |         | 21       |


# Do the indexes work?

|                  | Dam – 1 Star | Dam – 3 Star | Dam – 5 Star |
|------------------|--------------|--------------|--------------|
| Sire - 1 Star on | 378 kg       | 393 kg       | 400 kg       |
| Terminal Index   | 863 days     | 847 days     | 825 days     |
|                  | R= 3=        | R+ 3=        | R+ 3=        |
| Sire - 3 Star on | 382 kg       | 395 kg       |              |
| Terminal Index   | 854 days     | 838 days     |              |
|                  | R= 3=        | R+ 3=        |              |
| Sire – 5 Star on | 388 kg       |              | 405 kg       |
| Terminal Index   | 845 days     |              | 798 days     |
|                  | R= 3=        |              | R+ 3=        |

\* Based on 83,944 ¾ bred beef steers slaughtered in 2017, where sire and dam were both genotyped




# Genetics Works; Beef.



- Past focus on terminal traits=> decline in maternal traits & no gain in replacement index.
- Beef genomics scheme introduced (2014), replacement index has turned around => Major gains in calves/cow/year and carcass traits.
- $\cdot \in$  uro-Stars & beef genomics are moving industry in right direction.



#### Genetics of Carcass Performance.



- ICBF approach;
  - Access to data from meat processors for all animals slaughtered in Ireland.
  - High level of sire recording by farmers.
  - Complete movement data.
- => More accurate data for genetic evaluations.
- Requires high level of trust re: data sharing & a "common good" ethos => farmer benefit.



## Average heifer performance (2017).

| Sire                                            | Dam     | Number | Cwt kg | Conf (1-15) | Fat (1-15) | Price/kg | Overall | Age Slau | Cwt/day* |
|-------------------------------------------------|---------|--------|--------|-------------|------------|----------|---------|----------|----------|
| Main                                            | beef b  | reeds. |        |             |            |          |         |          |          |
| СН                                              | СН      | 39,147 | 348.5  | 8.8         | 8.7        | €4.08    | €1,422  | 811.1    | 0.43     |
| LM                                              | LM      | 43,802 | 336.0  | 9.0         | 8.5        | €4.07    | €1,368  | 816.0    | 0.41     |
| SI                                              | SI      | 3,107  | 320.2  | 7.6         | 8.9        | €3.95    | €1,265  | 827.5    | 0.39     |
| AA                                              | AA      | 8,684  | 285.1  | 6.5         | 10.0       | €3.85    | €1,097  | 761.4    | 0.37     |
| HE                                              | HE      | 3,669  | 282.8  | 6.1         | 10.2       | €3.88    | €1,097  | 795.6    | 0.36     |
| Main                                            | dairy c | ross   |        |             |            |          |         |          |          |
| HE                                              | FR      | 42,669 | 277.5  | 5.3         | 9.9        | €3.99    | €1,107  | 748.0    | 0.37     |
| AA                                              | FR      | 70,470 | 273.5  | 5.5         | 9.6        | €4.00    | €1,094  | 741.3    | 0.37     |
| Dairy                                           |         |        |        |             |            |          |         |          |          |
| НО                                              | HO      | 25,092 | 274.1  | 3.5         | 8.2        | €3.57    | €978    | 887.4    | 0.31     |
| * Expressed as carcass weight/age at slaughter. |         |        |        |             |            |          |         |          |          |

- Charolais is best breed based on overall carcass weight, carcass value and carcass gain/day.
- This does <u>NOT</u> consider "cost of feed" (either feed intake during finishing period or system of finish) => Profit.



# Traits & models.

- Carcass weight and fat score => 12 trait model including carcass, live-weight, cow & foreign EBV's.
- Carcass conformation => 9 trait model including carcass, price, quality and foreign EBV's.
- Models account for gender (steers, heifers, bulls & cows), finishing herd, pedigree versus non-pedigree.
- Contemporary groups as random=> smaller breeds.
- · Genetic groups to account for breed differences.
- Heterosis and recombination fitted in model.
- Genomics two step with blending DGV (from SNP Blup) with PA and Trad Eval (Van Raden 2009).



#### Carcass weight - Key parameters.

| Trait                     | Parameter |
|---------------------------|-----------|
| Heritability              | 38%       |
| Key genetic correlations. |           |
| - Weaning weight          | 0.57      |
| - 400 day weight          | 0.65      |
| - 600 day weight          | 0.70      |
| - Cow live-weight         | 0.50      |
| - Cull cow carcass weight | 0.60      |

• Live-weight is a good predictor of carcass weight, but its not carcass weight!



#### Carcass Conformation – Key parameters.

| Trait                              | Parameter |
|------------------------------------|-----------|
| Heritability                       | 33%       |
| Key genetic correlations.          |           |
| - Cull cow conformation score      | 0.57      |
| - Muscle composite (linear sores). | 0.47      |
| - Weanling quality score (farmers) | 0.30      |
| - Weanling price/kg (marts).       | 0.36      |
| - Post weanling price/kg (marts).  | 0.51      |

#### Carcass conformation score is more difficult to predict.



## Resultant Genetic Evaluations.

| Breed       | 1pc   | 50 pc | 99рс  |
|-------------|-------|-------|-------|
| All Breeds  | -6.07 | 15.99 | 33.88 |
| - Angus     | -8.25 | 5.00  | 20.00 |
| - Charolais | 16.50 | 32.88 | 47.50 |
| - Hereford  | -7.50 | 4.37  | 15.50 |
| - Limousine | 9.75  | 22.75 | 38.50 |
| - Simmental | 7.96  | 21.25 | 36.50 |

- Resultant evaluations presented as PTA's (i.e., what the sire/dam will pass on to progeny).
- Range of 25kg within breed & 40 kg across breeds
- · Considerable overlap between breeds.



# Validating Carcass Evaluations.

- Approach taken;
  - 105,837 beef heifers slaughtered in 2018 (year to date).
  - 40,694 with official genomic evaluations from Sept 2017, i.e., before carcass data was included in their evaluation.
- How well would the genomic index predict future performance?
- Is it better than other predictors, e.g., breed and traditional genetic evaluations?

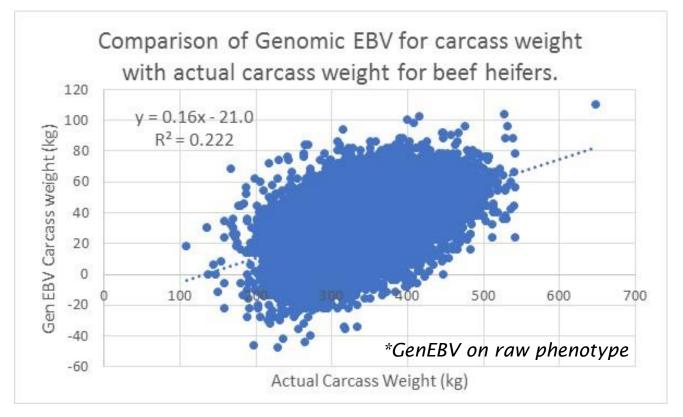


#### Accuracy of carcass weight evaluations

| Genomic Eval Cwt  | Number | Actual Cwt kg | EBV Cwt (pred) | Price/kg | Overall         | Age Slau | Cwt/day |
|-------------------|--------|---------------|----------------|----------|-----------------|----------|---------|
| 5 stars - Top 20% | 10,953 | 365.3         | 52.1           | €4.29    | €1,582          | 751      | 0.49    |
| 4 stars           | 8,160  | 348.3         | 38.9           | €4.23    | €1 <i>,</i> 497 | 760      | 0.46    |
| 3 stars - Ave     | 8,150  | 339.3         | 31.1           | €4.19    | €1 <i>,</i> 450 | 766      | 0.44    |
| 2 stars           | 7,417  | 326.1         | 22.4           | €4.13    | €1,384          | 774      | 0.42    |
| 1 star - Btm 20%  | 6,013  | 301.7         | 7.3            | €3.94    | €1,266          | 775      | 0.39    |
| No Stars          | 21,342 | 326.6         |                | €4.22    | €1,383          | 779      | 0.42    |

- Genomic Evaluations for carcass weight accurately predicted actual performance.
  - Top 20% predicted at +52.1 kg compared to +7.3 for bottom 20%. Difference of 44.8. Actual difference => 63.6
  - Significant additional gains on age at slaughter.
- Moving industry from 3 stars to 5 stars=>+€200 per animal slaughtered (~€200m for Irish beef industry).

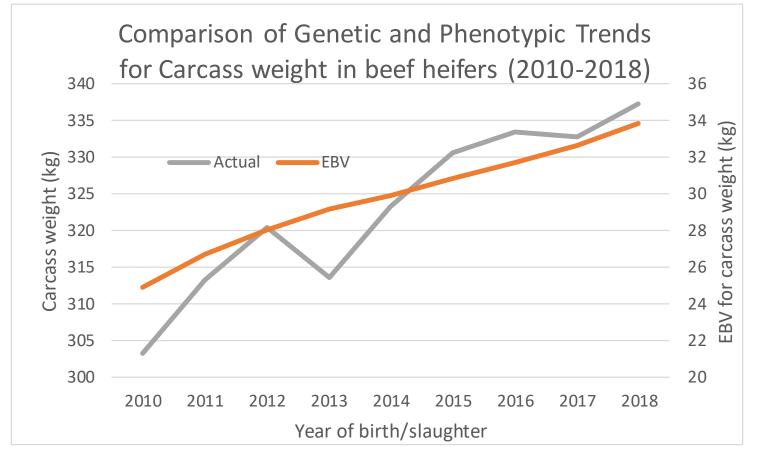



## 5 Stars versus CH breed?

| Comparison        | Number | Actual Cwt kg | EBV Cwt (pred) | Price/kg | Overall | Age Slau | Cwt/day |
|-------------------|--------|---------------|----------------|----------|---------|----------|---------|
| 5 stars - Top 20% | 10,953 | 365.3         | 52.1           | €4.29    | €1,582  | 751      | 0.49    |
| Breed             |        |               |                |          |         |          |         |
| СН*СН             | 45,200 | 350.0         | 40.0           | €4.27    | €1,499  | 767      | 0.46    |

- 5 star animals significantly outperformed the CH breed. Similar trends for other breeds.
- 5 star animals are made up of animals from all of the individual breeds.
- The key reason why ICBF invests so much effort into our within breed improvement programs (i.e., G€N€ IR€LAND)=> genetic gain for beef industry.




#### Genomic vs Traditional evaluation.



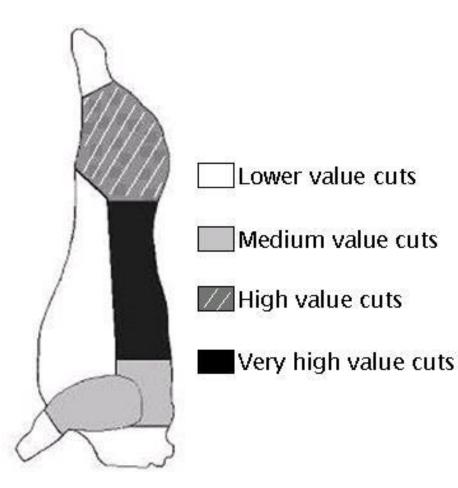
Irish experience; Genomic evaluation is only marginally better than traditional evaluation  $(R^2=0.20).$ 

- Benefits of genomics=> more from lower  $h^2$  traits.
- Work on single step ongoing but size & complexity of data remains a challenge! (Garrick, Veerkamp, Stranden)

#### Genetic & Phenotypic Trends.



 Genetic gain of ~1kg Cwt/year. Actual = 3kg => In line with expectations. Worth €100m to Irish beef farmers.

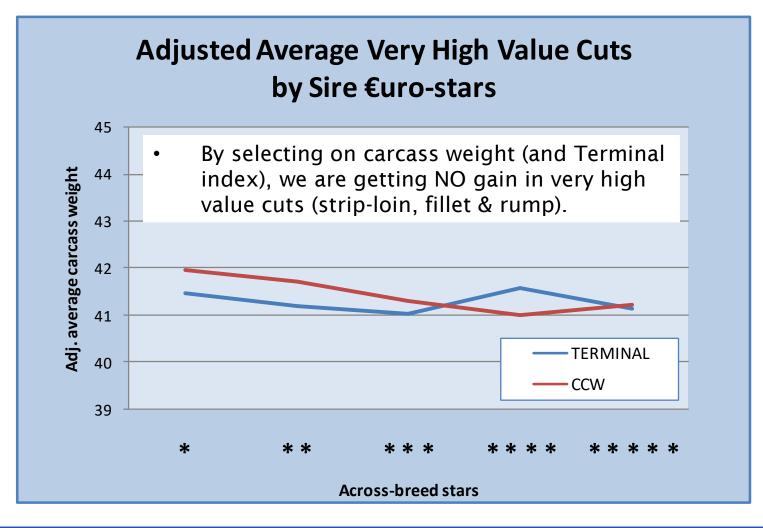



#### Its not just about carcass weight!



- Two LM\*beef young bulls which were part of the G€N€ IR€LAND performance test.
- One ate 300kg of concentrates more than the other during the 100 day finishing period for a similar weight gain => Terminal Index.

# Carcass Traits - where next?




 Move from use of carcass weight data to individual cuts.

- Initial work completed in 2012, but failed to implement.
  - Enough dissections to establish accurate predictions (n=500).
  - Routine access to cut data from meat processors.
  - New project under way with Teagasc, ICBF & Irish meat processing industry=> Meat Technology Ireland.
    - 1200 dissection records + data from Morel boning systems.
    - 7000 animals with sensory data.



# Why is this important?

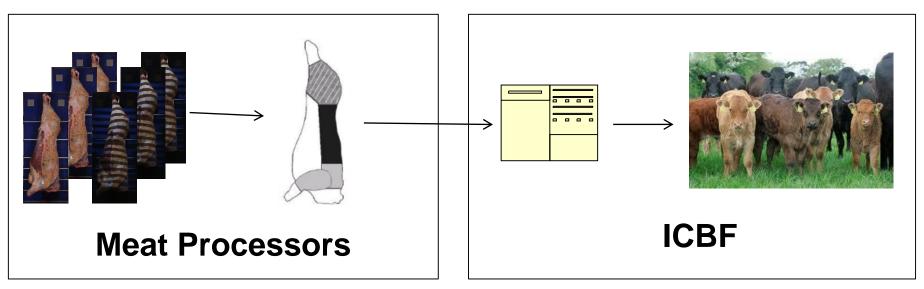




| Cuturous      | Deee   |           | CD   | h²          |
|---------------|--------|-----------|------|-------------|
| Cut name      | Recs   | Mean (kg) | SD   | n-          |
| Topside       | 50,935 | 22.84     | 3.69 | 0.58 (0.03) |
| SS Flat       | 39,938 | 16.09     | 2.84 | 0.27 (0.03) |
| Eye of round  | 38,066 | 6.43      | 1.24 | 0.56 (0.04) |
| Knuckle       | 45,630 | 14.07     | 2.11 | 0.45 (0.03) |
| Rump          | 48,744 | 18.92     | 2.92 | 0.26 (0.03) |
| Striploin     | 23,853 | 16.02     | 2.74 | 0.17 (0.03) |
| Fillet        | 34,546 | 7.02      | 1.17 | 0.22 (0.03) |
| Cuberoll      | 16,767 | 12.39     | 2.29 | 0.19 (0.04) |
| Bavette       | 27,191 | 16.59     | 2.67 | 0.12 (0.03) |
| Brisket       | 34,540 | 16.10     | 3.03 | 0.28 (0.03) |
| Chuck Tender  | 29,973 | 13.25     | 2.09 | 0.32 (0.03) |
| LMC/ FQ Misc. | 47,356 | 26.53     | 4.22 | 0.22 (0.02) |
| Chuck & Neck  | 49,516 | 36.49     | 6.74 | 0.34 (0.03) |
| Heel/Shank    | 48,317 | 11.91     | 1.72 | 0.49 (0.03) |

**TECHNOLOGY** 

CENTRE


SUPPORTED BY ENTERPRISE IRELAND



AT NOLOGY

Dr Michelle Judge & Prof Donagh Berry

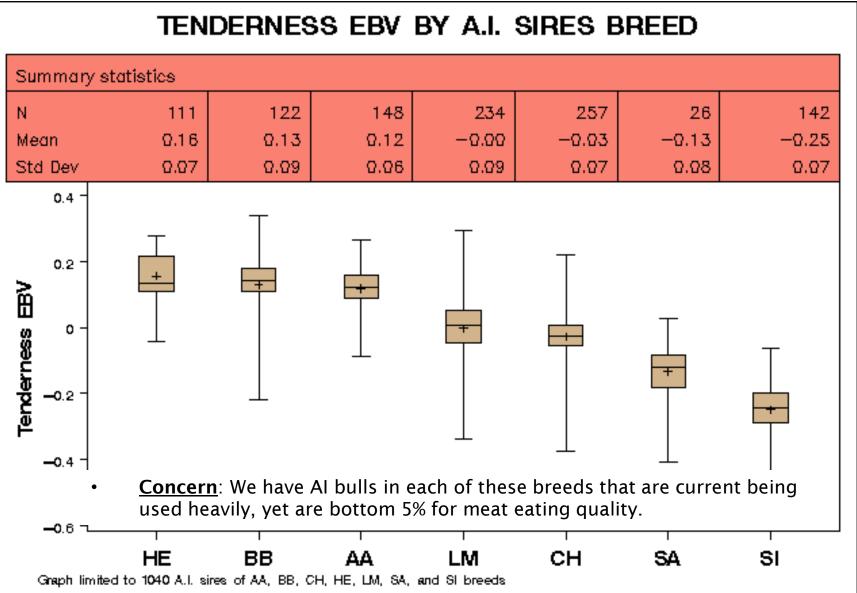
# Future; Converting images=>genomic evaluations.



- Program of work underway. Major focus for ICBF and beef industry.
- New genomic evaluations for carcass cut data, including indexes for 2019+

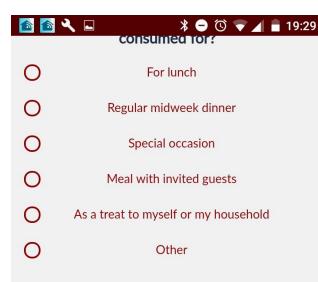


# Meat Eating Quality.




| Trait      | Heritability |
|------------|--------------|
| Tenderness | 0.16         |
| Juiciness  | 0.10         |
| Flavour.   | 0.09         |

- ~2000 animals analysed to date, based on "trained panel" data (~14k records).
  - Initial parameters indicate significant opportunity to increase meat eating quality through genetics.
    - High genetic correlations (>0.8).
- Test EBV's generated and validation work undertaken.
- Target for release through MTI & ICBF later this year.



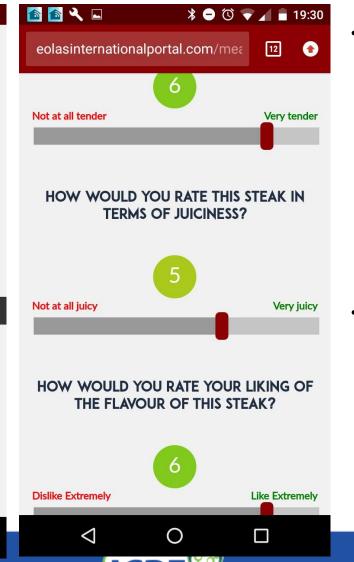

#### Genomics for Meat Eating Quality.



© Iris

#### Project; MEQ & Consumers.




INFO ON BEEF PRODUCT

How is the steak going to be cooked?

| Cooked:   | Fried | Grilled |
|-----------|-------|---------|
| Oven Cook | red   | Other   |

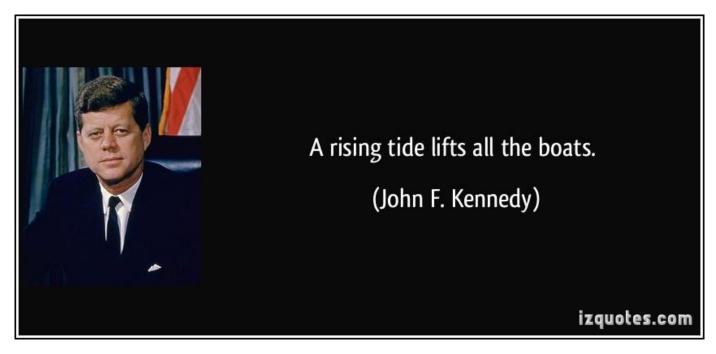
#### PLEASE UPLOAD A PICTURE OF THE PACKAGING (LABEL)

 $\bigcirc$ 



App developed to collect relevant meat eating quality data directly from consumers.

 Initial field trial/validation work under way.


 $\triangleleft$ 

# Current Priority Projects.

- DNA Calf Registration.
- · Carcass cut and meat eating quality.
- · App's for collection of data on farm.
  - Particular focus on health & disease traits (including animal treatments etc).
- GHG => cow size/live-weight (cow efficiency).
- Dairy beef => increasing value of beef from dairy herd (sexed semen, calving, carcass, quality....).
- ·  $G \in N \in IR \in LAND =>$  increase rate genetic gain in beef.
- International collaboration => to ensure Irish beef farmers have access to best genetics globally.



# Collaboration in data sharing.



- Ireland & ICBF are strong advocates, both nationally (ICBF central database) & internationally (ICAR, Interbull, Interbeef, today!....).
  - Not without its challenges => ownership, agreements , services.....
- ICBF approach; Keep the "farmer at the core" and focus on long term genetic gain off "more from less" => sustainable beef.



# Summary.

- There are no downsides to data sharing.
  - Challenges, but many upsides (profit & societal good).
- · Genetics works (humans, dairy & beef).
  - 5 star animals are more profitable & sustainable than average & 1 star animals. How do we generate more=> breeding programs focused on long term genetic gain.
- Live-weight is not carcass weight! However, future focus needs to be on carcass cut data.
- · Meat eating quality will be a key trait for the future.
- Ireland is always open to engaging with like minded partners in the area of cattle breeding.



Thank you for the invitation and please visit us in Ireland!



#### **Our Farmer & Government Representation**



#### **Acknowledging Our Members**