Benefits of Gene Ireland and GIBB herds

Introduction

- Gene Ireland maternal beef breeding program launched in Autumn 2012
- Currently around 300 qualified Gene Ireland maternal beef breeder (GIBB) herds
- Model developed to estimate benefits of GI and GIBB initiatives
- How these benefits may change with genomics and the BDGP
- Case study based on Limousin breed (100 GIBB herds)

Benefits Model

- Recursive model with multiple flows of genetic merit
- \cdot Sire usage stats estimated from data on both
 - GIBB and non-GIBB pedigree herds
 - Commercial herds
- 25% of replacements from suckler beef x dairy heifers

Sire types and usage

		Cow herd			
Bull origin	Bull type	GIBB	Other pedigree	Commercial	Dairy
Foreign	AI	71.1%	50.7%	15%	0%
	Stockbulls	3.7%	1.7%	0%	0%
GIBB	Gene Ireland AI	0%	0%	0%	0%
	Homebred stockbulls	2.1%	N/A	N/A	N/A
	Stockbulls	4%	1.9%	5%	10%
Other pedigree	AI	7.7%	13.8%	10%	10%
	Homebred stockbulls	N/A	3.5%	N/A	N/A
	Stockbulls	11.1%	28.2%	50%	60%
Non pedigree	Stockbulls	0%	0%	20%	20%

Key questions

- Changes in total benefits when:
 - Gene Ireland AI bulls have larger impact
 - Genomics is used
 - Al usage from Gene Ireland bulls is increased in commercial herds
 - More Gene Ireland candidates are available
 - Foreign AI bulls improve
 - Stockbulls from GIBB herds have larger impact
 - A higher proportion of replacements are sourced from dairy crosses

Key Parameters

Description	Parameter	
Number of expressions of sire index superiority per year (20%	400,000	
replacements kept x 5 lactations)		
Proportion of expressions of sire index superiority via beef cross		
dairy	25%	

Key Parameters

Description	Parameter
Range in young bull replacement index values	€60
Lift if select the best 50%	€16
Range of young bull index values after progeny recorded	€120
Lift if select the best 50%	€32
Range of Gene Ireland progeny tested candidates	€150
Lift if select the best 20%	€74

Key Parameters

Description	Parameter
Annual gain in replacement index of foreign bulls used (year on year)	€2
Superiority of a dairy cross relative to a suckler replacement	€15
Immediate lift from BDGP sourcing of improved heifers	€30

Early release of GI bulls with genomics

	Progeny proportion		
Age of selected GI sire(years)	Without genomics	With genomics	
2	0	0.3	
3	0	0.5	
4	0	0.2	
5	0.3	0	
6	0.4	0	
7	0.3	0	

BDGP adoption - keeping better replacements

Benefits of BDGP adoption

- Using higher euro star bulls and keeping higher quality replacements has a substantial impact on the total benefits after 10 years, with €32.4M additional total benefits over status quo
- \cdot Zero progress without the BDGP

Increasing Gene Ireland AI usage

- What is the impact of replacing foreign AI usage in pedigree herds with more Gene Ireland AI?
 - Gene Ireland AI use increased to 30% (50%) in all pedigree herds, only GIBB herds, and increased to 20% in commercial herds
- Impact of doubling the size of the Gene Ireland program
 - Gene Ireland AI use increased to 30% in pedigree herds with the top 10% of bulls selected instead of the top 20%
- Impact of using genomics with traditional progeny testing to "release" top AI bulls earlier
 - Gene Ireland AI use increased to 30% in pedigree herds, with main usage at 3 years old instead of 5.
- Impact of a higher proportion (50%) of replacements sourced from dairy herds

Increasing Gene Ireland AI usage - 30% usage in pedigree herds

Increasing Gene Ireland AI usage - 50% usage in pedigree herds

Increasing Gene Ireland AI usage - 30% usage in GIBB herds only

Increasing Gene Ireland AI usage - 30% usage in GIBB herds only

- Currently GIBB herds contributing a small proportion of stock bulls and AI bulls
- This needs to change!

Sire types and usage

		Cow herd			
Bull origin	Bull type	GIBB	Other pedigree	Commercial	Dairy
Foreign	AI	71.1%	50.7%	15%	0%
	Stockbulls	3.7%	1.7%	0%	0%
GIBB	Gene Ireland AI	0%	0%	0%	0%
	Homebred stockbulls	2.1%	N/A	N/A	N/A
	Stockbulls	4%	1.9%	5%	10%
Other pedigree	AI	7.7%	13.8%	9%	10%
	Homebred stockbulls	N/A	3.5%	N/A	N/A
	Stockbulls	11.1%	28.2%	46%	60%
Non pedigree	Stockbulls	0%	0%	25%	20%

Increasing Gene Ireland AI usage - 30% usage in ped and 20% in commercial

Increasing Gene Ireland AI usage – twice as many Gene Ireland bulls tested

Increasing Gene Ireland AI usage - twice as many Gene Ireland bulls tested

- · Only 25% increase in selection intensity
 - AI bulls taken from top 10% c.f. top 20% of those PT'd.
- Gene Ireland only part of the driver of genetic progress
- Gene Ireland needs to have a bigger impact before expansion justified
- Need to clarify the important of GI for training and improving genomic selection

Increasing Gene Ireland AI usage - Gene Ireland bulls used earlier

Increasing Gene Ireland AI usage - 50% of replacements from dairy

Increasing Gene Ireland AI usage - 50% of replacements from dairy

- If more dairy genes coming into suckler herd, then less opportunity to exploit gains in maternal beef genetics
- \cdot Dilution
- Decision on dairy cross replacements depends on future merit of dairy crosses vs suckler replacements

Increasing Gene Ireland AI usage outcomes

- Using 30% Gene Ireland AI in pedigree herds yields
 €36M more in benefits after 20 years over BDGP
- Increasing this to 50% yields an additional €25M after 20 years
- Using 30% Gene Ireland AI in GIBB herds only yields
 €2M more after 20 years at current usage of GIBB stockbulls
- 20% usage of Gene Ireland AI in commercial leads to an additional €34M over pedigree herd usage
- A higher proportion of dairy replacements led to a €20M drop in benefits after 20 years

Increased merit of foreign AI bulls sourced

- How will the total benefits change if the Foreign AI sires improve (more maternal)
 - The superiority of the foreign AI sires over Irish sires was set to €20 at year 0
 - This superiority was assumed to remain at a constant level going forward (i.e. not diverging)

Increased merit of foreign AI bulls sourced

Increased merit of foreign AI bulls sourced

- Increasing the merit of the foreign AI sires led to the highest short term benefits (after 10 years), €9.5M higher than status quo with BDGP
- After 10 years the total benefits per year were parallel to status quo, with the total benefits after 20 years €16M higher than status quo with BGDP
- Long term underperforms Gene Ireland based strategy

Key results.

- Better replacements through the BGDP leads to €27M more in total benefits in 10 years time
- Increasing usage of Gene Ireland AI to 30% in pedigree herds produces the largest benefits - extra €36.2M total benefits in 20 years time
- Doubling the number of Gene Ireland candidates adds €12M after 20 years
- 20% usage of Gene Ireland AI in commercial herds leads to an additional €34M over just pedigree herd usage after 20 years

Key results (continued)

- Higher merit Foreign AI sires produce good short term results, but wider usage of Gene Ireland AI is a significantly better long term strategy
- Genomics increases accuracy, confidence, and should make the logistics of AI simpler
 - Market semen earlier from a bull

The unanswered question

- Can genomics replace Gene Ireland progeny testing?
- Answer
 - To do this, genomics would need to identify maternal bulls sufficiently accurately for them to be used widely by AI in pedigree herds (displacing Foreign AI usage)
- But
 - Gene Ireland progeny test is important to underpin genomics data quality

Additional scenarios?

- This is complicated.....how do we communicate it better?
- What are the key questions?
- What is realistic?
- Additional scenarios
 - More GIBB herds
 - Data quality

