# Improving herd fertility

Scott McDougall Animal Health Centre, Morrinsville, New Zealand





# Outline

- Introduction
- Current state of play in NZ
- How to improve fertility?
- Conclusions



## **Animal Health Centre** - Clinical vet business – Research business - Nutritional consultancy -40 vets -10 sites - 300,000 cows - 1,000 dairy herds



# The NZ dairy industry

- One major farmer owned co-operative collects >90% of milk
- Predominantly export (95%)
  - Butter, cheese, casein, milk powder etc.
- Low input/low output/low cost system
- Predominantly pasture fed
  - Rye grass/white clover
  - Increasing use of maize silage
- Highly seasonal calving/breeding system





# The dairy industries

|                                                               | NZ     | Ireland             |  |
|---------------------------------------------------------------|--------|---------------------|--|
| No. cows                                                      | 3.92 m | 1.09 m              |  |
| No. herds                                                     | 11,630 | 21,000              |  |
| Cows/herd                                                     | 337    | 55                  |  |
| Farm size (Ha)                                                | 121    | 40                  |  |
| Cows/Ha                                                       | 2.8    | 1.7                 |  |
| Volume (L/cow/annum)                                          | 3791   | 4 <mark>6</mark> 00 |  |
| Milksolids/cow (kg/annum)                                     | 330    | 370                 |  |
| Farmer payment (\$NZ/kg MS)                                   | 5.60   |                     |  |
| Earmer payment (Euro/L)                                       | 0.26   | 0.34                |  |
| Source: Dairy Statistics 2006-2007, LIC; ICBF 2006 Statistics |        |                     |  |

# Cow breeds:







Friesian
 F x J cross bred
 Jersey
 Ayrshire
 Other



### Milk production by age and breed



#### The pasture growth rate and energy requirements for dairy cows



# Changes in the dairy industry

- $\uparrow$  herd size
- ^ /cow & /Ha production
- feed inputs
- profitability and feed & land prices
- Staff availability and skills
- Changes in regulatory/consumer environment











# Current reproductive performance of NZ herds?

| Cows NDO pre PSM (%)               | 20 |
|------------------------------------|----|
| Conception rate to 1st service (%) | 53 |
| 3-week submission rate (%)         | 81 |
| 8-week in-calf rate (%)            | 80 |
| Empty rate (%)                     | 11 |



12

### Herd reproductive performance

(n = 141 herds; 2003/04)



Compton and McDougall 2005

# How important farmers believe fertility is to their business

(n = 200 herdowners; Fowler and Tiddy, 2006)



# Degree of satisfaction with current herd fertility (n = 199 herdowners; Fowler and Tiddy, 2006)



### Reproductive performance of NZ cows



Harris 2005; www.lic.co.nz

Note denominator for 'calved by 6 weeks' = total cows present at start of **previous** breeding season (less non-reproductive deaths/culls; excludes heifers)



#### Factors affecting reproductive performance?

#### **Cow level**

- Calving date
- Age
- Breed
- Peripartum + other disease
- BCS and BCS change
- Non-cycling
- Milk yield & protein %

#### **Genetics**

- Bull selection
- Production interaction with reproduction
- Genetics x environment?

#### Herd level/managerial

- Seasonal vs. split calving
- Once a day milking
- Nutrition
  - Milk protein %
  - Heifers
- Oestrus detection systems
- Breeding management
  - Timing of AI
  - Al technique
  - Semen handling
  - Use of hormones
- Cow group management
- Herd size
- Farm business structure
- Farmer age & education
- No. labour units on farm
- "Skill"

# 8 week in calf rate



# 8 week in calf rate by BCS at start of breeding



### BCS of 2523 cows from 6 herds



21

Compton and McDougall 2006

#### calving 6.0 BCS 5.5 5.0 Mating BCS 4.5 4.0 NZ70 NZ90 3.5 •OS90 3.0 -Sep-03 Mar-04 Jul-03 Nov-03 Jan-04 May-04 Macdonald and Montgomery 2005 Dexcel field day: <sup>22</sup>

http://www.dexcel.co.nz/data/usr/fd%5F2005%5F3%2D8%2Epdf

# Genes vs. management?

- Complex
- Heritability of reproduction only 5%?
  - (18% for calving to first ovulation)
  - Long term solution
  - Slow change via changes in Fertility BW
  - Cross breeding
- Thus 95% management?
  - 'permanent' environment effects?
  - Need to work with genetics available



# **Dexcel strain trial**

|                  | NZ70   | NZ90   | OS90  | Р    |
|------------------|--------|--------|-------|------|
| Calving date     | 29-Jul | 27-Jul | 6-Aug | *    |
| CIDR (%)         | 11     | 8      | 3     | n.s. |
| PSC-ovn 1        | 32.2   | 38.7   | 28.4  | **   |
| % heat detection | 89     | 91     | 87    | n.s. |
| Con S1 (%)       | 45     | 46     | 39    | n.s  |
| Con S2 (%)       | 54     | 48     | 44    | n.s  |
| 6-wk in-calf     | 70     | 69     | 54    | ***  |
| 8-wk in-calf     | 80     | 75     | 62    | ***  |
| PSM-con          | 28.4   | 29.3   | 33.6  | n.s. |
| Final preg (%)   | 0.93   | 0.93   | 0.87  | *    |





# When to assess herd performance?

- Midpoint of calving
- Induction time
- Before start of mating (non-cycler's)
- 3-weeks into mating (submission rates)
- 6-8 weeks into breeding (Non-return rates
- Pregnancy testing



# How to assess performance?

- Calculate key performance indicators:
- Electronic databases
  - Mindapro reports (<u>http://www.lic.co.nz</u>)
  - Fertility focus reports (In-calf)
  - 'Herd plus' (http://www.icbf.com/)
- Manual calculations
  - # inductions/total # cows \*100 (%)
  - # non-cyclers/total # cows \*100 (%)
  - # empties (incl. culls!)/total # cows \*100 (%)







#### Reproductive Performance, Spring 2006 Final report



## Targets/Goals?

|                             | Actual* | NZ herd | Тор            | Ireland |
|-----------------------------|---------|---------|----------------|---------|
|                             |         | goals+  | 25%            |         |
| Late calvers (%)            | 5       |         | 0 <sup>†</sup> |         |
| Non cyclers (%)             | 20      | 5       | <10            | <10     |
| Days to half cows calved    | 19      | 13      | <18            |         |
| Con rate to 1st service (%) | 53      | 71      | >55            | >60     |
| 3-week sub rate (%)         | 81      | 91      | >90            | >90     |
| 6-week in-calf rate (%)     | 68      | 84      | >75            | >71     |
| 8-week in-calf rate (%)     | 80      | 91      | >85            |         |
| Total length of mating (d)  | ?       | 63      | 85             |         |
| Empty rate (%)              | 11      | 7       | <7             | <8      |



\*Based on data from Xu and Burton 2003 and McDougall and Compton 2005 ‡ Based on the needs analysis of 200 herdowners conduced by ROMP in Feb 2006

+ Based on performance of top 25% of herds that undertook whole herd pregnancy testing with the AHC in 2004/05

# What to do if the targets are not being achieved?

- Each herd is different:
- There is NOT a 1-size-fits-all solution
  - Herd specific goals
  - Need to analyse each herd's data separately
  - Develop a plan
- Fertility is multi-factorial: there is not a 'silver bullet'



## Possible tools

- Calving pattern management
  - Breed heifers to calve earlier than cows
  - Shortened breeding periods
  - Split calving
  - Focused culling
  - Inductions
- Heifer rearing

   Contract rearing
   weight gain contracts



# Nutritional management

- BCS management

   Drying off decision making
- Supplementary feeds
  - Maize, palm kernal, tapioca
- Transition cow systems







#### Genetics

- Cross-breeding
- Selection of sires on Fertility EBV
- 'Short' gestation bulls
- 'Easy calving' bulls





#### Heat detection systems

- 1 key individual in charge of detection
- Staff training



Increased frequency of observation





# Bull management

- Nutrition & BCS
- Disease
  - EBL, BVD, TB
- Fertility testing
- Rotation policies
- Lameness & injury management



### **Cow Health**

- Periparturient disease diagnosis and treatment
- Non-cycler treatments
- Early pregnancy testing and treatment
- BVD/neospora vaccination



|                               | Cont | P4+ODB | Ρ |    |
|-------------------------------|------|--------|---|----|
| 28 days submission rate (%)   | 70   | 93     | * |    |
| % pregnant wk 4               | 35   | 55     | * |    |
| Start breeding-conception (d) | 40   | 25     | * | 35 |



# NZ breeding programme



# Conclusions

- Fertility is declining
  - Multiple reasons for this
  - Unlikely to be a 'silver' bullet



- Improving herd fertility requires
  - A thorough assessment of the herd
  - Combined input of veterinarian, nutritionist, AB companies etc.



BUT top fertility can be achieved by good management

