Research Trials-Moorepark and DEXCEL-implications for breeding

Dairy Production Department Teagasc Moorepark

Overview

- Background
- Influence of EBI on farm profitability
- Use of alternative breeds/crossbreeding
- Lessons for Dairy Cattle Breeding in
 - Ireland
- Conclusions

Drivers of Change

- Reduction in fertility of Irish dairy herds
- Lower milk price in future
- Seasonality of milk supply
- Reduction in dairy farm numbers
- Farmers Preference
- Nitrate directive

Decline in Fertility 1990-2000 (DairyMIS FARMS)

Decline in Fertility 1990-2002 (DairyMIS FARMS)

Decline in Fertility 1990-2000 (DairyMIS farms)

Holstein-Friesian Strain Trial Review

Strain comparison

EBI Milk Fat Prot. Calving Survival(€) (kg) (kg) (kg) Interval

HP4425312.110.2-0.57-0.60

HD 42 106 7.8 6.7 -1.86 0.10

NZ 51 30 9.7 5.0 -3.24 0.89

Strain Comparison

Feed		MP			HC	
Strain	HP	HD	NZ	HP	HD	NZ
Milk (gals)	1389	1312	1299	1652	1548	1436
Fat (%)	4.11	4.02	4.44	3.98	4.32	4.53
Protein (%)	3.44	3.47	3.55	3.47	3.47	3.62
Milk solids (kg)	491	460	486	576	564	548
42-Day in-calf(%)	60	66	73	60	66	73
Preg rate (%)	80	85	93	80	85	93

Key Assumptions

- Farm Size- 40(ha)
- Quota- 468,0001 (100,000gals)
- Milk price (c/l)- High 26.7; Low 22.3
- Cull cow price (€)- High 381; Low 270 (NZ-13)
- Calf price (€)- High 208;Low 102 (NZ -45)
- Concentrate (€)- High 200/t; Low 180/t
- Full costs including labour

Effect of Strain of HF on Farm Profitability-High Milk Price Scenario

Effect of Strain of HF on Farm Profitability -Low Milk Price Scenario

Strain trial indications BCS Milk solids **Grass intake** Fertility **Energy balance Persistent milk production**

Results from New Zealand

The Strains

- NZ90s = New Zealand High; high BW, sired by NZ sires, low overseas Holstein
- NZ70s = NZ 1970s strain; Sired by 1970s bulls, foundation dams were low BW
- OS90s = Overseas High BW; high BW, sired by high N. American Holstein %, founder dams high overseas %, but NZ born

Current Average BWs

Top 5% of herds in NZ have \$BW > 120 (Dairy Stats, 02/03)

Reproductive Performance 01-02

Strain	OS90s	NZ90s	NZ70s
6-week	56	70	70
12-week	83	90	93

Crossbreeding

Heterosis or Hybrid vigour

F1 Cross	NZHF*J	Hol*J	NZHF*Hol
Protein (kg)	5.5	6.2	2.1
Fat (kg)	7.5	9.6	2.6
Milk (kg)	147	157	67
Incalf (%)	6.8	10.1	3.3
Survival 2 nd (%)	3.4	8.8	2.7
Survival 5 th (%)	9.6	18.3	6.3

Why Crossbreed ?

- "Narrow" selection Reduction in health and reproductive traits of Holstein-Friesian
- Other breeds better selected for health traits
- Complementarity of breeds
- Hybrid vigour

What do farmers need to know before embarking on crossbreeding?

- 1. Are there at least two breeds of near equal merit for profitability?
- 2. How big are the heterosis or crossbreeding effects for profit-related traits?
- 3. What happens in advanced generations of a crossbreeding plan?

CHOICE SOURCING OF ALTERNATIVE BREED(S)

Montbeliarde

Scandanavian Red

Ballydague Experiment

-Breeds compared

- Montbeliard
- Norweigan Red
- Holstein Friesian
- Normande
- Montbeliard* Holstein Friesian
- Normande*Holstein Friesian
- -Feeding Systems
 - 500kg V 1000kg/cow

Milk production 2001-2003

Heterosis- Milk production

Reproductive Performance (Ballydague 01-03)

Cow Breed		Pure-	Pure- F1	
		breds	progeny	
CSI (days)	76	75	75	74
CCI (days)	95	96	90	87
No. Services/cow.	1.93	1.87	1.74	1.67
CR - 1 st service (%)	42	44	56	61
6 week incalf rate (%)	56	58	69	74
Empty rate (%)	19	8	10	9

Heterosis- 6-Week Incalf Rate

Heterosis- Overall Incalf Rate

Preliminary conclusions (1)

- Genetic selection in Ireland must be based on the traits that have the greatest impact on farm profit → High health status → High milk solids
- The results demonstrate the importance of progeny testing future sires within the environment they are to be used-IRELAND.

Preliminary conclusions (2)

- For crossbreeding to be successful the alternative breed must be be genetically high in traits such as: milk solids, fertility, survival, calving ease, mastitis resistance and beef merit
- To use an alternative breed successfully it must be ranked within the same index as Holstein-Friesian