An International Perspective on Genomics

Dorian Garrick dorian@iastate.edu

Sire Progeny Means

Costs of Production

Independent Culling Levels

Costs of Production

Index Selection

Costs of Production

Suppose we generate 100 progeny on 1 bull

Sire

Progeny

Performance of the Progeny

We learn about parents from progeny

Suppose we generate new progeny

Sire Sire EBV +16-18 kg

Expect them to be 8-9 kg heavier than those from an average sire

Some will be more others will be less but we cant tell which are better without "buying" more information

Progeny

Chromosomes are a sequence of base pairs

Part of 1 pair of chromosomes

Cattle usually have 30 pairs of chromosomes One member of each pair was inherited from the sire, one from the dam Each chromosome has about 100 million base pairs (A, G, T or C) About 3 billion describe the animal

Blue base pairs represent genes/exons

Yellow represents the strand inherited from the sire

Orange represents the strand inherited from the dam

A common error is the substitution of one base pair for another Single Nucleotide Polymorphism (SNP)

Errors in duplication

- Most are repaired
- Some will be transmitted
- Some of those may influence performance
 - Some will be beneficial, others harmful
- Inspection of whole genome sequence
- Demonstrate historical errors
- And occasional new (de novo) mutations

Leptin

Leptin Receptor

Joining the two

Leptin and its Receptor Across Species

Breeding Merit is sum of average gene effects

Blue base pairs represent genes/exons

Consider 3 Bulls

Below-average bulls will have some above-average alleles and vice versa!

At any 1 locus there are 3 genotypes

Regress BV on QTL genotype

True Breeding Value

qq

Illumina Bovine 770k, 50k (v2), 3k

700k (HD)

50k (Several versions)

3k (LD)

SNP Genotyping the Bulls

Linkage Disequilibrium (LD)

D occurs when genotypes at one locus are predictive of genotypes at another

True Breeding Value

 A_2A_2

www.23andme.com

Health Risks Alzheimer's Disease

Decreased Risk 🕜

www.23andme.com

Coronary Heart Disease

Each bar represents a different risk QTL allele (mouseover shows the allele and links to the research publications) QTL=Quantitative Trait Locus

Only significant, validated GWAS findings used in prediction

39-56 % Attributable to Genetics

Dorian Garrick 55.0 out of 100

men of European ethnicity who share Dorian Garrick's genotype will develop Coronary Heart Disease between the ages of 45 and 79.

Average 46.8 out of 100

men of European ethnicity will develop Coronary Heart Disease between the ages of 45 and 79.

Plant & Animal Perspective

- Typically more SNP loci than subjects
- Landmark concepts were suggested by Meuwissen, Hayes & Goddard (2001)
 - Could simply fit all the SNP together (regardless of "significance") by treating as random effects
 - They referred to these methods as "BLUP" or "BayesA"
 - Or use a variable selection model to fit as random effects some subset of the most informative SNP
 - They proposed a method called "BayesB"

Theoretical Basis for Accuracy

Size of Training Population Goddard & Hayes (Nature Reviews Genetics, 2009)

Reliable prediction requires large training populations of genotyped and phenotyped individuals Predictive Ability = Accuracy (r) = correlation true & predicted merit

Accuracy of Genomic Prediction

Accuracy of Genomic Prediction

Accuracy of Genomic Prediction

Impact on Accuracy--%GV=10%

Genetic correlation=0.3

blended Accuracy

Blending will not improve the accuracy of a bull that already has a reliable EBV

Impact on Accuracy--%GV=40%

Genetic correlation=0.64

Blended EBVs are equally likely to be better or worse than the preblended EBVs

blended Accuracy

Layer Hens – Dekkers scheme

Strategy	Trad	itional
	Male	Female
#candidates with	1000	3000
phenotype	1000	3000
# selected	60	360
Generation interval		10
(months)		13
Information	Own Pł	nenotype

Layer Hens – Dekkers scheme

Strategy	Trad	itional	(GS
	Male	Female	Male	Female
#candidates with phenotype	1000	3000	300	300
# selected	60	360	50	Cross 50
Generation interval (months)	:	13	ě	mating
Information	Own Pł	nenotype	Genotype	+Phenotype

Halve the generation interval and reduce costs by (less phenotyping) to get same gain & same inbreeding

Selection Response - Difference between the lines

After 3 generations of conventional or 6 gens of genomic selection Genomic selection was as good, if not better in terms of realized response

Predictions in Beef Cattle Breeds

Trait	RedAngus (6,412)	Angus (3,500)	Hereford (2,980)	Simmental (2,800)	Limousin (2,400)	Gelbvieh (1,321)+
BirthWt	0.75	0.64	0.68	0.65	0.58	0.62
WeanWt	0.67	0.67	0.52	0.52	0.58	0.52
YlgWt	0.69	0.75	0.60	0.45	0.76	0.53
Milk	0.51	0.51	0.37	0.34	0.46	0.39
Fat	0.90	0.70	0.48	0.29		0.75
REA	0.75	0.75	0.49	0.59	0.63	0.61
Marbling	0.85	0.80	0.43	0.63	0.65	0.87
CED	0.60	0.69	0.68	0.45	0.52	0.47
CEM	0.32	0.73	0.51	0.32	0.51	0.62
SC		0.71	0.43		0.45	
Average	0.67	0.69	0.52	0.47	0.57	0.56

Genetic correlations from k-fold validation Saatchi et al (GSE, 2011; 2012; J Anim Sc, 2013)

Typically (40%) one crossover produces a new recombinant gamete

Sometimes there may be two (20%) or more (10%) crossovers

Never close together

Consider a small window of say 1% chromosome (1 Mb)

Regress BV on haplotype dosage

1

0

Use multiple regression to simultaneously estimate dosage of all haplotypes (colours) in every 1 Mb window

2 "blue" alleles

Panel Comparison

Black = Illumina 50K

Panel Comparison

Black = Illumina 50K Blue = Illumina HD (700K)

No longer using Illumina 50k Panel Comparison

GeneSeek Genomic Profilers Low Density Super GGP (20k) \$45 High Density GGP HD (77k) \$75 Orange = GGP-Super LD 19k Green = GGP-HD (taurus) 70k Black = Illumina 50K

GGP also include custom SNP

50k and GGP-HD share 28K 50k and GGP-Super LD share 8k

Need to genotype more individuals/yr Need cheaper genotyping

There are multiple minor variants of all these panels!

Also a separate GGP-HD-I (Indicus)

Lower Density Panels

Trait	Actual	Imputed	
Birth Weight	0.67	0.65	
Calving Ease Direct	0.68	0.67	Actual = 50k Imputed = 10k
Calving Ease Maternal	0.51	0.50	(from GGP-LD)
Fat Thickness	0.47	0.46	
Marbling	0.42	0.42	
Mature cow weight	0.64	0.62	
Rib Eye Muscle Area	0.49	0.46	
Scrotal Circumference	0.43	0.42	
Weaning Weight Direct	0.53	0.50	
Weaning Weight Maternal	0.37	0.35	
Yearling Weight	0.61	0.59	
Mean	0.53	0.51	

Genomic Prediction Pipeline

Early 2014 Genotype Counts

Breed	9k	GGP-LD	50k	GGP-HD	BOS-1	700k HD	TOTAL
AAN		911	13,409	787		947	16,054
BRG			1,128	173		243	1,544
BSH			325			136	461
CHA			1,617			525	2,142
GVH	186	209	1,643	371	414	430	3,253
HER			7,064	1,887	471	850	10,272
LIM		429	3,420	8	461	675	4,993
NEL						2,571	2,571
RAN			1,931	1,183	226		3,340
RDP			1,394				1,394
SIM	5,223	7,026	6,501	1,347	1,601	674	22,372
TOTALS	5,409	8,575	38,432	5,756	3,173	7,051	68,396

Major Regions for Birth Weight

Genetic Variance %

Chr_mb	Angus	Hereford	Shorth	orn Limousin	Simmenta	al Gelbvieh
7_93	7.10	5.85	0.01	0.02	0.18	0.02
6_38-39	0.47	8.48	11.6	3 5.90	16.3	4.75
20_4	3.70	7.99	1.19	0.07	1.53	0.03
14_24-26	0.42	0.01	0.01	0.71	3.05	8.14
	7	1				
	Adding Hapl	otypes	Impu	ted 700k		
	3.20%			Collective 3 QTL		
	5.90%			30% GV		

Some of these same regions have big effects on one or more of weaning weight, yearling weight, marbling, ribeye area, calving ease

PLAG1 on Chromosome 14 @25 Mb

Effect of 1 copy	Growth
Birthweight	5 lb (10 lb for QQ – qq)
Weaning weight	10 lb
Feedlot on weight	16 lb
Feedlot off weight	24 lb
Carcass weight	14 lb

PLAG1 on Chromosome 14 @25 Mb

Effect of 1 copy	Growth
Birthweight	5 lb (10 lb for QQ – qq)
Weaning weight	10 lb
Feedlot on weight	16 lb
Feedlot off weight	24 lb
Carcass weight	14 lb
Effect of 1 copy	Reproduction
Effect of 1 copy Age CL (1 st Corpus Luteum)	Reproduction38 days (76 days QQ - qq)
Effect of 1 copyAge CL (1st Corpus Luteum)PPAI (post partum anoestrus)	Reproduction38 days (76 days QQ - qq)15 days
Effect of 1 copyAge CL (1st Corpus Luteum)PPAI (post partum anoestrus)Presence CL before weaning	Reproduction38 days (76 days QQ - qq)15 days-5%
Effect of 1 copy Age CL (1 st Corpus Luteum) PPAI (post partum anoestrus) Presence CL before weaning Weight at CL	Reproduction 38 days (76 days QQ – qq) 15 days -5% 36 lb

Sequence

- Now sequencing individual sires
 - Identify loss-of-function alleles to compare to underrepresented haplotype alleles
 - Identify mutations that are perfectly concordant with haplotype allelic effect
 - More powerful across breed

Genomic Prediction

- Exploits advances in quantitative genetics, statistical genetics, computing, molecular biology, and bioinformatics
- Is the basis for some aspects of personalized medicine
- Will revolutionize plant and animal improvement programmes, but to different extents in different industries

Genomic Prediction

- Its application in humans, plants and animals is still an immature but maturing technology
- Its development will greatly benefit from collaborative activities with other researchers across the entire range of disciplines with interests in genomics

Acknowledgments

- Dr. Rohan Fernando
- Dr. Jack Dekkers
- Dr. Max Rothschild
- Dr. Ania Wolc
- Dr. Bruce Golden
- Dr. Mahdi Saatchi
- Dr. Kadir Kizilkaya
- Dr. David Habier
- Dr. Hailin Su
- Dr. Jungjae Lee
- Dr. Jingjing Yan
- Ziging Weng

- GeneSeek
- Beef Breed Associations
 - American Angus Assoc
 - American Hereford Assoc
 - American Simmental Assoc
 - American Gelbvieh Assoc
 - Red Angus Association
- Aviagen (Broilers)
- HyLine (Layers)
- Livestock Improvement Corp